8.1 Apply The Distance & Midpoint Formulas, 8.3 Circles Notes

Distance Formula

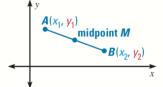
KEY CONCEPT

For Your Notebook

The Distance Formula

The distance *d* between (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Midpoint Formula

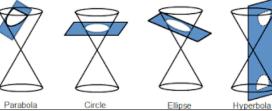

KEY CONCEPT

For Your Notebook

The Midpoint Formula

A line segment's *midpoint* is equidistant from the segment's endpoints. The midpoint formula, shown below, gives the midpoint of the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$.

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$



In words, each coordinate of *M* is the mean of the corresponding coordinates of A and B.

ex: (o, 6), (5, -4)

- a) Find the distance between the two points.
- b) Find the midpoint of the line segment joining the two points.

conic section - a figure formed by the intersection of a plane and a double-napped cone.

circle - locus of points equidistant from a center

Standard Form:

Where:

(h, k):_____

ex: Sketch. Then state the center and radius.

a)
$$(x-1)^2 + (y-3)^2 = 4$$

b)
$$x^2 + (y+5)^2 = 9$$

ex: Complete the square

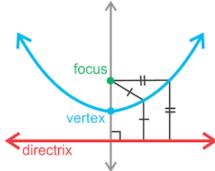
- a) $x^2 8x + 13$
- b) $x^2 + 10x 1$
- c) $2x^2 12x 7$
- d) $-3x^2 + 12x + 5$

ex: Rewrite from general to standard form. Then sketch and state the center and radius.

a) $x^2 + y^2 + 2x - 6y + 5 = 0$

b) $x^2 + y^2 + 6x - 4y + 12 = 0$

ex: Write an equation in standard form of the circle with the given characteristics.


a)

center: (6, 4) Area: 9π

Endpoints of a diameter: (-7, -1), (-9, 5) Center: (4, 3)
Lies tangent to the line y=6

8.2 Parabolas Notes

parabola - locus of points equidistant from a focus and directrix

*The focus and directrix are not the actual graph. They are "graphing aids" that define the points on the parabola.

Standard Form

Opens: UP/DOWN

Opens: RIGHT/LEFT

Where

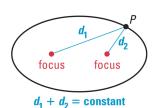
vertex:_____

p>o:_____

D<0.

|p|:_____

|4*p*|:_____


	1 1	
ex: Sketch & state the vertex, foo		
a) $(x-5)^2 = 8(y+3)$	b) $(y+1)^2 = -4(x+2)$	c) $(y-3)^2 = 12(x-2)$
		, (3)
ex: Rewrite from general to stand	ard form then sketch.	
a) $y^2 + 2x + 6y + 1 = 0$	b) $4x^2 + 8x - 5y - 6 = 0$	c) $y^2 + 12x - 6y - 27 = 0$
, , , =	, · · · · · · · · · · · · · · · · ·	, , ,
ev: Write an equation in standard	form of the parabola with the div	ven characteristics
ex: Write an equation in standard		
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a)	b)	c)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)
a) vertex: (2, 3)	b) vertex: (1, 2)	c) focus: (4, 0)

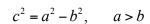
vertex: (3, -7) latus rectum length: 42 opens left

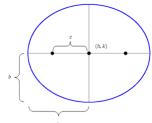
e)

directrix: y=-2 right endpoint of the latus rectum: (1,0)

8.4 Ellipses, 8.5 Hyperbolas Notes
| ellipse - locus of points P in a plane such that the sum of distances between P and two fixed points, called the foci, is constant

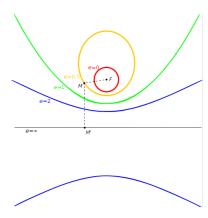
Ellipse Vocabulary Ellipse


Standard Form

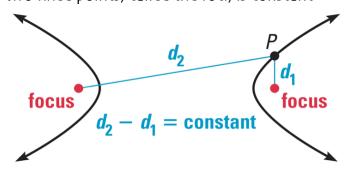

Horizontal Ellipse Vertical Ellipse

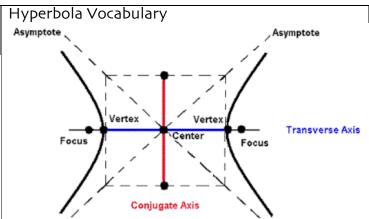
Where:

center:_____


horizontal distance:_____

Eccentricity - a measure of how much the conic section deviates from being circular


$$e = \left| \frac{c}{a} \right|$$



*The eccentricity of an ellipse is 0 < e < 1.

ex: Sketch. State the center, foci, major axis leng	th, minor axis length, vertices and eccentricity.
a) $\frac{(x+4)^2}{25} + \frac{(y+1)^2}{4} = 1$	
Center	
Foci	
Major Axis Length	
Minor Axis Length	
Vertices	
Eccentricity	
$(y+4)^2$	
b) $(x-1)^2 + \frac{(y+4)^2}{9} = 1$ Center	
Foci	
Major Axis Length	
Minor Axis Length	
Vertices	
Eccentricity	
ex: Rewrite in standard form.	
a) $4x^2 + y^2 - 32x - 4y + 52 = 0$	b) $4(x-10)^2 + 21(y+2)^2 = 12$

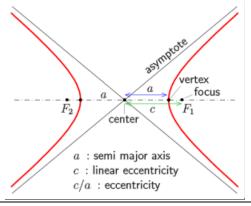
<u>hyperbola</u> - locus of points P in a plane such that the difference of distances between P and two fixed points, called the foci, is constant

Standard Form

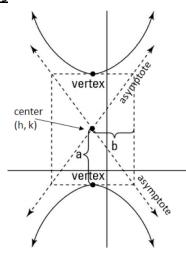
Opens L	-eft & Right
$(x-h)^2$	$(y-k)^2$
$\frac{\binom{1}{2}}{2}$	$-\frac{(3)^{2}}{(1)^{2}}=1$
a ²	h ²

Opens Up & Down
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Where:


center:_____

horizontal distance:_____


vertical distance:

<u>Foci</u> - the foci of the hyperbola lie on the transverse axis at a distance c units from the center

$$c^2 = a^2 + b^2$$

Asymptotes

Equations:

ex: Sketch. State the center, foci, vertices and asymptotes.

a)	$(x-2)^2$	$-\frac{y^2}{1} = 1$
رد	4	4

Center	
Foci	
Vertices	
vertices	
Asymptotes	
Lyskinkrores	
1	

b)
$$(y+1)^2 - \frac{(x+3)^2}{4} = 1$$

Center	
Foci	
Vertices	
Asymptotes	

ex: Rewrite in standard form.

$$4x^2 - 9y^2 - 16x + 18y - 65 = 0$$

8.4 Ellipses, 8.5 Hyperbolas - Day 2

Writing Equations	
Ellipse	Hyperbola
NEED:	NEED:
INCLU.	INCLU.

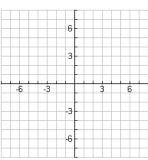
REVIEW

ex: Sketch. State the center, foci and asymptotes (if applicable).

a)
$$\frac{(y+3)^2}{4} - \frac{(x-1)^2}{9} = 1$$

b)
$$\frac{(x+2)^2}{16} + y^2 = 1$$

o) ellipse vertices: (o, 2) & (8, 2) minor axis length: 6 b) ellipse foci: (3, 0) & (-3, 0) major axis length: 12

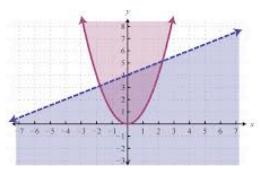

c) ellipse verticies: (o, 5) & (o, -5) passes through the point		hyperbola vertices: (8, 14) & (8 conjugate axis lengtl	, -10) 1: 12
e) hyperbola foci: (o, 8) & (o, -8) asymptotes: y=4x, y=-4x	f)	circle center: (2, -5) tangent to the x-axis	
g) parabola focus: (2, 3) directrix: y=7			
8.6 Classifying Conic Sections REVIEW - Standard Form Equations	Notes		
Circle			
Parabola			
Ellipse	I		
Hyperbola			

Examples of Conic Sect	ions in Standard Form		
1. Circles		1	
	$2x^2 + 2y^2 + 16x - 20y + 32 = 0$	$19x^2 + 19y^2 + 14y - 6x + 88 = 0$	
2. Parabolas			
	$4x^2 - 6y - 8x - 2 = 0$	$y^2 - 2x - 4y + 10 = 0$	
3. Ellipses			
	$3x^2 + 2y^2 + 16x - 12y - 6 = 0$	$-4x^2 - 6y^2 + 3x + 2y + 12 = 0$	
4. Hyperbolas			
	$5y^2 - 3x^2 - 2x - 6y + 8 = 0$	$3x^2 - y^2 + 9 = 0$	
	General Form:		
	If B=o,	then	
	1. Circle when		
	2. Parabola when_		
	3. Ellipse when		
	4. Hyperbola wher	1	
ex: Classify.			
a) $y^2 + 4x^2 - 5y + 4x^2$	x - 8 = 0	b) $3x^2 - 3y^2 - 6x + 4y - 4 = 0$	
ex: Classify and ske			
a) $y^2 + x + 10y + 26$	= 0	b) $x^2 + y^2 - 6x + 4y + 12 = 0$	
$\int 4x^2 - y^2 - 24x + 2$	2y + 39 = 0	d) $4x^2 + 9y^2 + 40x + 36y + 100 = 0$	

Nonlinear Systems & Optimization Nonlinear Systems		
ne and Circle System:		
o Solutions	1 Solution	2 Solutions
ine and Parabola System:		
o Solutions	1 Solution	2 Solutions
ircle and Parabola System: o Solutions		
o Solutions	1 Solution	2 Solutions
3 Solutions		4 Solutions
		1 2 2 2
ystems of Equations		
x: Is the point a solution to the sa) (1, 2)	system? b) (2, 7)	`
$4y^2 + 34x + y - 52 = 0$		
	$x^2 + y^2 =$	
2x + y - 4 = 0	$x^2 > -4$	(y-1)

$$(x-3)^2 + y^2 = 1$$

$$(x-3)^{2} + y^{2} = 1$$
$$y^{2} = -4(x-2)$$


Ex: Solve algebraically.

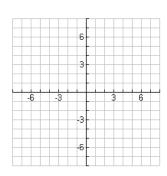
a)
$$x^2 + y^2 = 13$$

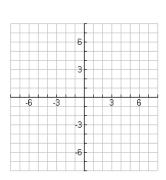
 $y = x - 1$

b)
$$\frac{-2y^2 + x + 2 = 0}{x^2 + y^2 - 1 = 0}$$

c)
$$x^2 - y^2 - 16x + 39 = 0$$

 $x^2 - y^2 - 9 = 0$


Systems of Inequalities


The solution is where the shading overlaps.

Ex: Solve graphically.

a)
$$x^2 + y^2 \le 9$$

 $x^2 > -4(y-1)$

b)
$$(y+3)^2 < 8(x+2)$$

 $x > 2$

