Addition Rule

Quiz: Monday

P(A or B) = probability that event A or event B occurs or they both occur

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Roll 2 dice. Record the sum.

Roll 2 dice. Record the sum.

$$\begin{vmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 7 & 8 & 9
\end{vmatrix}$$
P(sum is a even or mult. of 5)
$$P(\text{sum is even or mult. of 5})$$
P(even) +P(mult. of 5) - P(even and mult. s) 6 7 8 9 10 11 12
$$\frac{18}{18} + \frac{7}{1} - \frac{3}{3} = 22 11$$

$$\frac{18}{36} + \frac{7}{36} - \frac{3}{36} = \frac{22}{36} = \frac{11}{18}$$

Survived	Men 332	Women 318	Boys 29	Girls 27	Totals 706	Is there
Died	1360	104	35	18	1517	overlap?
Total	1692	422	64	45	2223	No

Find the probability of selecting a man or a woman

$$P(M \cup W) = \frac{1692}{2223} + \frac{422}{2223} - 0$$

$$= \frac{2114}{2223} = .951$$

	Men	Women	Boys	Girls	Totals	
Survived	332	318	29	27	706	Is there
Died	1360	104	35	18	1517	
Total	1692	422	64	45	2223	overlap?

overlap? Yes

Find the probability of selecting a woman or someone who survived

$$P(W \cup Surv.) = \frac{422}{2223} + \frac{706}{2223} - \frac{318}{2223} = \frac{810}{2223}$$

$$= \frac{332 + 318 + 29 + 27 + 104}{2222} = \frac{319}{2223}$$

$$= \frac{810}{2222}$$

	Men	Women	Boys	Girls	Totals
Survived	332	318	(29)	27	706
Died	1360	104	35	18	1517
Total	1692	422	64	4 5	2223

Is there overlap?

Find the probability of selecting a boy or someone who died

	Men	Women	Boys	Girls	Totals	
Survived	332	318	29	27	706	Is there
Died	1360	104	35	18	1517	overlap?
Total	1692	422	64	45	2223	ovenap:

Find the probability of selecting a man or someone who died

Survived		Women 318	Boys 29	Girls 27	Totals 706	
Died	1360	104	35	18	1517	Is there
Total	1692	422	64	45	2223	overlap?

Find the probability of selecting a child or someone who did not survive.

1573

$$P(A)=.27$$
 $P(A \cup B)=.45$
 $P(A \cap B)=.12$
 $P(B)=.12$

Use the addition rule formula to find P(B)
$$P(AVB) = P(A) + P(B) - P(AB)$$

$$.45 = .27 + P(B) - .12$$

$$.3 = P(B)$$

Definition

Events A and B are disjoint (or mutually exclusive) if they cannot both occur

together.

Total Area = 1

Event A: randomly selecting a senior

Event B: randomly selecting a junior

Event A: randomly selecting a senior Event B: randomly selecting a junior

Yes, because there is no overlap.

Event A: randomly selecting a doctor Event B: randomly selecting a female

Event A: randomly selecting a doctor Event B: randomly selecting a female

No, there are female doctors.