Angles in Standard Position

In a coordinate plane, an angle can be formed by fixing one ray, called the **initial side**, and rotating the other ray, called the **terminal side**, about the vertex.

An angle is in **standard position** if its vertex is at the origin and its initial side lies on the positive *x*-axis.

Rotations counter-clockwise: positive

Rotations clockwise: negative

Example 1: Draw an angle with the given measure in standard position.

Definition of coterminal angles: angles where the terminal sides coincide.

*To find a coterminal angle, add or subtract multiples of 360°.

Example 2: Find one positive and one negative coterminal angle for 140° .

$$|40' + 360' = 500'$$

$$|40' - 360' = -220'$$

140.

Angles can also be measured in radians. One radian is the measure of an angle in standard position whose terminal side intercepts an arc of length ${\bf r}$.

Because the circumference of a circle is $2\pi r$, there are 2π radians in a full circle. Therefore:

 $360^{\circ} = 2\pi$ radians and $180^{\circ} = \pi$ radians

$$|rad = \frac{180}{\pi} = 57.3^{\circ}$$

Ex 3: Convert from degrees to radians

Ex 4: Convert from radians to degrees

100°

00 - 11

 $\frac{7\pi}{6}$ 30 $\frac{180}{6} = 210$

10TT

Arc Length and Area of a Sector

The arc length s and area A of a sector with radius r and central angle θ (measured in radians) are as follows.

Arc length: $s = r\theta$

Area: $A = \frac{1}{2}r^2\theta$

Example 5: Find the arc length and area given r = 3 cm and central angle $\theta = 120^{\circ}$.

arc length

$$\theta = \frac{2\pi}{3}$$

$$S = \Gamma \Theta = 3\left(\frac{2\pi}{3}\right)$$

area

$$f = \frac{1}{2} \int_{0}^{2} f dt = \frac{1}{3} \int_{0}^{$$

Example 6: Use a calculator to evaluate the trigonometric expression. Round to 3 decimal places.			
$\cos\left(\frac{5\pi}{7}\right)$	cot(500°)	csc(-300°)	$\left(\sin\left(\frac{11\pi}{5}\right)\right)$
623	-1.192	1.155	17.588

+ansob

For each coordinate of the unit circle, because of SOH CAH TOA, the

x-coordinate corresponds to cosine

y-coordinate corresponds to sine

Quadrantal Angles

A quadrantal angle is an angle in standard position whose terminal side lies on an axis.

ex: List the quadrantal angles on the indicated interval.