9.1 Right Triangle Trigonometry

What is trigonometry?

Trigonometry is is a branch of mathematics that studies relationships involving lengths and angles of triangles.

Commonly Used Greek Letters in Trigonometry Used to Represent Angle Measures:

 θ

 α

β

SOHCAHTOA

$$\sin \theta = \frac{\text{Opposite side}}{\text{hyp.}}$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hyp.}}$$

Reciprocal Trigonometric Ratios

Cosecant:
$$\csc\theta = \frac{1}{\sin\theta} = \frac{\text{hyp.}}{\text{PPDSITE}}$$

Secant: $\sec\theta = \frac{1}{\cos\theta} = \frac{\text{hyp.}}{\text{adjacent}}$

Cotangent: $\cot\theta = \frac{1}{\tan\theta} = \frac{\text{adjacent}}{\text{PPDSITE}}$

Secant:
$$\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hyp.}}{\text{adjacent}}$$

ex: Find all trigonometric functions of theta.

ex: If $\cos\theta = \frac{3}{4}$ find the other trigonometric functions of theta.

$$coto = \frac{3}{17}$$

Common Pythagorean Triplets

Memorize these!

ex: Solve $\triangle ABC$.

Find a
$$\frac{1}{40028} = \frac{a}{15}$$

$$\frac{7.98}{7.98} = a$$

Find a

Find a

$$A = B = 62$$
 $A = B = 62$
 $A = C = C = C = C$
 $A = C = C = C = C$
 $A = C = C = C = C$
 $A = C = C = C = C$
 $A = C = C$
 $A = C = C$
 $A = C = C$
 $C = C$

Vocabulary

- <u>angle of elevation</u> - the angle between one's line of sight and the horizontal

Vocabulary

- <u>angle of depression</u> - the angle between one's line of sight and the horizontal

The angle of depression and elevation are CONGRUENT!

ex: A parasailer is attached to a boat with a rope 300 feet long. The angle of elevation from the boat to the parasailer is 488. Estimate the parasailer's height above the boat.

X=222.99Ft 300

ex: If a plane that is cruising at an altitude of 30,000 ft wants to land safely it must begin its descent so that the angle of depression to the airport is 7°.

a) How many miles from the airport must the plane begin descending?

|mile=5280-9+

 $\frac{1}{\sqrt{6.2700}} \times \frac{30,000}{\sqrt{1000}}$

ex: If a plane that is cruising at an altitude of 30,000 ft wants to land safely it must begin its descent so that the angle of depression to the airport is 7°.

b) How many miles will the plane travel before landing?

46.62 miles