8.1 Apply The Distance & Midpoint Formulas8.3 Circles

*See printout.

Distance Formula

KEY CONCEPT For Your Notebook The Distance Formula The distance d between (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

HW Day 1 (new syllabus)

8.1, 8.3 WKST

Midpoint Formula

KEY CONCEPT

For Your Notebook

The Midpoint Formula

A line segment's *midpoint* is equidistant from the segment's endpoints. The **midpoint formula**, shown below, gives the midpoint of the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$.

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

In words, each coordinate of M is the mean of the corresponding coordinates of A and B.

a) Find the distance between the two points.

$$d = \sqrt{5^2 + 10^2}$$

$$= \sqrt{25 + 100} = 5\sqrt{5}$$

b) Find the midpoint of the line segment joining the two points.

$$2N2 = 0$$
 $105 + 25 = 0$

3

2 3

5 6

Conic Sections

<u>conic section</u> - a figure formed by the intersection of a plane and a double-napped cone.

circle - locus of points equidistant from a center

Standard Form

$$\left(x-h\right)^2 + \left(y-k\right)^2 = r^2$$

Where:

(h, k): Center

r: radius

ex: Sketch. Then state the center and radius.

a)
$$(x-1)^{2} + (y-3)^{2} = 4$$

Center (1,3)
 $r = 2$

ex: Sketch. Then state the center and radius.

b)
$$x^{2} + (y+5)^{2} = 9$$

Center $(0, -5)$
 (-5)

REVIEW

ex: Complete the square.

a)
$$x^2 - 8x + 13$$
 $(\chi^2 - 8x + 16) = 16 + 13$ $(-\frac{8}{2}) = 16$ $(\chi - 4) = 13$

b)
$$x^2 + 10x - 1$$

ex: Complete the square.

c)
$$2x^2 - 12x - 7$$

d)
$$-3x^2 + 12x + 5$$

ex: Rewrite from general to standard form. Then sketch and state the center and radius.

ex: Rewrite from general to standard form. Then sketch and state the center and radius.

b)
$$x^{2}+y^{2}+6x-4y+12=0$$

 $\chi^{2}+6x+9-9+y^{-4}y+4-4=-12$
 $(\chi+3)^{2}+(y-2)^{2}=1$
 $C:(-3,2)$
 $r=1$

ex: Write an equation in standard form of the circle with the given characteristics.

Area:
$$9\pi$$

$$(x-6)^{2}+(y-4)^{2}=9$$

ex: Write an equation in standard form of the circle with the given characteristics.

Endpoints of a diameter: (-7, -1), (-9, 5)

$$(x+g)+(y-2)=10$$

ex: Write an equation in standard form of the circle with the

 $(x-4)^{+}(y-3)=9$

given characteristics.

c)

Center: (4, 3)

Lies tangent to the line y=6

