33.
$$(a_8 = -10)$$
 $a_{10} = -58e'(20, 58)$
 $(a_{1}-0)$ $a_{10} = -4(n-n+1)$
 $-10 = -58 = 4(8-20)$
 $-4 = 4$
 $a_{10} = 4(n-8)$
 $a_{10} = -4(n-8)$
 $a_{10} = -4(n-8)$

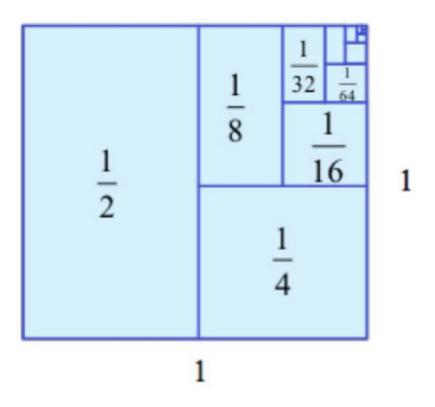
45.)
$$S_n = \frac{n(a_1 + a_2)}{2}$$

$$= \frac{b(-9 + 72)}{2}$$

$$= \frac{5(-54+9i)}{2}$$

$$(a1.)$$
 $|+3+5+7+...+299$
 $a_n = 2n-1$ $S = n(a_1+a_n)$
 $299 = 2n-1$ $S = D(1+299)$
 $S = D(1+299)$

$$5 + 10 + 15 + ... + 9D$$


$$a_n = 5n \qquad S_{18} = \frac{18(5 + 90)}{2}$$

$$90 = 5n$$

$$18 = n$$

$$\sum_{N=1}^{18} 5n$$

7.3/7.4 Geometric Sequences and Series

*See printout.

Geometric Sequences

In a **geometric sequence**, the ratio of any term to the previous term is constant. This constant ratio is called the **common ratio** and is denoted by *r*.

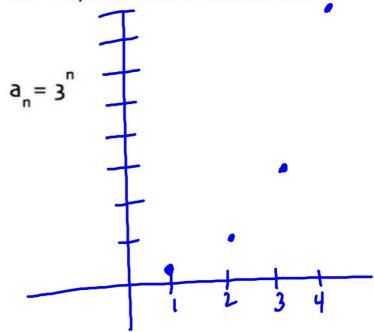
ex: Determine if the sequences is geometric. If so, identify the common ratio.

c)
$$16, \frac{12}{12}, 9, \frac{27}{4} \dots$$

$$\frac{1^2}{16} = \frac{3}{4}$$

ex: Write the 1st terms of the sequence and sketch the graph.

graph.


$$\alpha_{n} = 3$$

$$\alpha_{i} = 3$$

$$\alpha_{2} = 9$$

$$\alpha_{3} = 27$$

$$\alpha_{4} = 81$$

Writing Explicit Rules for Geometric Sequences/Series

*Since geometric sequences have an exponential pattern, the explicit rule is exponential!

Recall Exponential Functions: y = ab*

Explicit Rule:
$$a_n = a_1 r^{n-1}$$

Where:

a₁ 1st term

r common ratio

ex: Write an explicit rule for the geometric sequence.

$$a_1 = 4$$

$$c = 5$$

$$a_n = 4.5$$

b)
$$a_2 = 3$$
, $r = 1/4$

$$Q_1 = 12$$

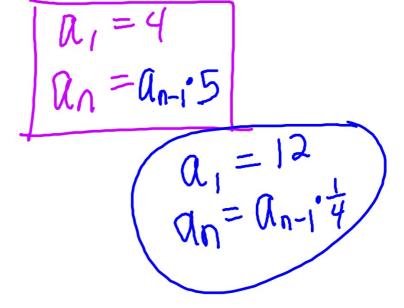
$$Q_1 = 12$$

$$Q_1 = 12$$

ex: Write an explicit rule for the geometric sequence.

c)
$$a_3 = 10, a_6 = 270$$

$$7 = 3$$


$$9D \quad \alpha_2 = \frac{10}{3}$$

$$27D \quad \alpha_1 = \frac{10}{9}$$

$$Q_1 = \frac{10}{9}(3)^{n-1}$$

Writing Recursive Rules for Geometric Sequences/Series ex: Write a recursive rule for the geometric sequence.

b)
$$a_2 = 3, r = 1/4$$

The Sum of a FINITE Geometric Sequence/Series

The Sum of a Finite Geometric Series

The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is:

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

S_n sum of the 1st n terms

n number of terms in the sum

a₁ 1st term in the sequence

r common ratio

The Sum of an INFINITE Geometric Sequence/Series

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_1 and common ratio r is given by

$$S = \frac{a_1}{1 - r}$$

provided |r| < 1 If $|r| \ge 1$, the series has no sum.

- S sum of ALL terms
- a₁ 1st term in the sequence/series
- r common ratio

$$a_{1} = 32 \quad r = \frac{1}{2}$$

$$32 + 16 + 8 + 4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$63.875$$

$$S = \frac{a_{1}}{1 - r}$$

$$63.984$$

$$S = \frac{32}{1 - \frac{1}{2}} = \frac{32}{1 - \frac{1}{2}} = \frac{32}{1 - \frac{1}{2}} = \frac{1}{2}$$

a) 1, 2, 4, 8, ...
$$(S_9 = ?)$$

$$S_9 = 1 \left(\frac{1 - 2^9}{1 - 2} \right)$$

$$= -511 - 51$$

ex: Find the indicated sum, if possible.

b)
$$\sum_{n=1}^{8} 6\left(-\frac{1}{2}\right)^{n-1}$$

$$S_{8} = \frac{G\left(1-\left(-\frac{1}{2}\right)\right)}{1-\frac{1}{2}} = \frac{G\left(1-\frac{1}{2}\right)}{4\left(1-\frac{1}{256}\right)}$$

$$\frac{3}{256}$$

c)
$$\sum_{n=1}^{\infty} 6\left(-\frac{1}{2}\right)^{n-1}$$

$$S = \frac{4}{1 - \frac{1}{2}}$$

$$5 = 8/3$$

9.)
$$\frac{8}{5} = 6(4)^{n-2}$$

finite geo.

 $a_1 = 24$
 $r = 4$
 $n = 6$
 $\frac{8}{6(4)^{n-2}}$
 $\frac{5}{6(4)^{n-2}}$
 $\frac{3}{1-4^{n}}$
 $\frac{7}{1-4^{n}}$
 $\frac{7}{1-4^{n}}$
 $\frac{7}{1-4^{n}}$
 $\frac{7}{1-4^{n}}$

h.) geo.
infinite
r=4

Non
Sum

e) 9 + 6 + 3 + 0 - 3 - . . .

AAH. instate NO SUM

f)
$$\sum_{n=0}^{6} n^2 = O + 1 + 4 + 9 + |[e + 25 + 36 = 9]|$$

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

ex: Express the series using summation notation. Then find the sum or explain why there is no sum.

$$\frac{105nik}{900} \sum_{n=1}^{\infty} 100(\frac{1}{5})^{n-1} = 125$$

ex: Solve for x.

a)
$$\sum_{i=1}^{x} 5 - 5i = -50$$

$$S_{n} = \frac{n(a_{1} + a_{1})}{2}$$

$$-50 = \frac{x(0 + 5 - 5x)}{2}$$

$$-100 = 5x - 5x^{2}$$

$$5(x^{2} - x - 20) = 0$$

$$5(x + 5)(x + 4) = 0$$

ex: Solve for x.

b)
$$\sum_{n=0}^{\infty} 3 \left(\frac{x}{2} \right)^n = 7$$

$$\int \frac{3}{1 - \frac{x}{2}}$$

$$\int \frac{3}{2 - x}$$

geo (infinite)
$$\Gamma = \frac{x}{2}$$

$$\Omega_1 = 3$$

$$7\left(\frac{2-x}{2}\right) = 3$$

$$7(2-x) = 0$$

$$14-7x = 0$$

ex: Find the sum of the first 15 three digit whole numbers ending in 5.

ex: Find the missing terms of the arithmetic sequence.

... 37, 33, 29, 25...

ex: Find the missing terms of the geometric sequence.