4.6 Solving Log & Exponential Equations - Mixed Practice & Finding Inverses

4.7 Exponential Word Problems - Compound Interest



Solve. Round to three decimal places if necessary.

## Two Types

- 1. Compound Interest
- 2. Growth/ Decay Models

## Compound Interest

For interest compounded n times per year:

$$A = P\left(1 + \frac{r}{n}\right)^{n+1}$$

## Where:

- A Accumulated amount
- P Principal
- r rate (as a decimal)
- n number of times compounded per year
- t time (years)

|              | n   |
|--------------|-----|
| Annually     | l   |
| Quarterly    | 4   |
| Monthly      | 12  |
| Weekly       | 52  |
| Daily        | 365 |
| Semiannually | 2   |
| Bimonthly    |     |

## Compound Interest

For interest compounded continuously:

$$A = Pe^{rt}$$

Where:

- A Accomplated amount
- P Principal
- r rate (as a decimal)
- t time (in years)

ex 1: Find the total value of a \$7,300 investment it is invested at 7% annual interest compounded semiannually

for 3 years. 
$$A = P(1 + \frac{1}{n})^{6}$$
  
 $A = 7300(1 + \frac{07}{2})^{6}$   
 $A = 8973.56$ 

ex 2: Find the total value of a \$7,300 investment it is invested at 7% annual interest compounded continuously for 3 years.

annual interest compounded con 
$$67(3)$$

$$A = 73000$$

$$= 9005.85$$

ex 3: Find the total value of a \$1.17 investment it is invested at 9% annual interest compounded daily since 1927.

$$A = 1.17 \left(1 + \frac{.09}{365}\right)^{365.92}$$

$$A = $4610$$

ex 3: ABC Bank is offering to double your money! They say that if you invest with them at 6% interest compounded continuously they will double your money. If you invest \$1500 in the account, how long will it take to double your money.

$$3000 = 1500e^{.06t}$$

$$\ln 2 = \ln e^{.06t}$$

$$\ln 2 = .06t$$

$$= 11.55$$
year

ex 5: An investment of \$7,000 becomes \$10,000 when invested for 5 years in a bank that compounds interest quarterly. What interest rate does the bank use?

Round the interest rate to the nearest tenth.

$$10,000 = 7000 \left(1 + \frac{1}{4}\right)^{20} |_{20} = .05$$

$$\left(\frac{10}{7}\right) = \left(1 + \frac{1}{4}\right)^{20} |_{20} = .05$$

$$1.017993718 = | + \frac{1}{4}$$

$$07197 = \boxed{7.197}$$

$$7.2.1$$

9. 
$$\ln \sqrt{x+5} = 3$$
  
 $(\sqrt{x+5}) = (e^3)^2$   
 $x+5 = e^6$   
 $x = e^6 - 5 = 398.429$ 

$$|2| \log 3^{x+1} = 5^{x-3}$$

$$(x+1) \log 3 = (x-3) \log 5$$

$$x \log 3 + \log 3 = x \log 5 - 3 \log 5$$

$$x \log 3 - x \log 5 = -\log 3 - 3 \log 5$$

$$x = \frac{-\log 3 - 3 \log 5}{\log 3 - \log 5} = -(\log 375)$$

$$= \frac{\log 3 - \log 5}{\log 3 - \log 5} = -(\log 375)$$