# 4.4 Evaluating Logarithms4.5 Properties of Logarithms



b) 
$$81^{3/4}$$

c) 9<sup>-5/2</sup> 
$$\frac{1}{243}$$

d) 
$$-16^{5/4}$$
  $-32$ 

ex: Solve.

a) 
$$2^x = 16$$
  $\chi = 4$ 

b) 
$$3^x = \frac{1}{3}$$
  $\chi = -1$ 

c) 
$$71^x = 1$$
  $\chi = 0$ 

d) 
$$25^x = 5$$
  $\chi = \frac{1}{2}$ 

e) 
$$27^{x} = 9$$
  
 $27^{2/3} = 9 \times = \frac{2}{3}$ 

## Definition of a Logarithm

Let *b* and *y* be positive numbers with  $b \ne 1$ . The **logarithm of** *y* **with base** *b* is denoted by  $\log_b y$  and is defined as follows:

$$\log_b y = x$$
 if and only if  $b^x = y$ 

The expression  $\log_b y$  is read as "log base b of y."

ex: Rewrite in exponential form.

a) 
$$\log_3 9 = 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$=$$

b) 
$$\log_{22} 1 = 0$$
  $22 = 1$ 

ex: Rewrite in logarithmic form.

a) 
$$3^5 = 243$$
  $\log_3 243 = 5$ 

b) 
$$27^{-2/3} = \frac{1}{9}$$
  $109a7 = -\frac{2}{3}$ 

a) 
$$\log_4 64 = 3$$
  
 $4^{12} = 64$ 

b) 
$$\log_3 81 = 4$$

c) 
$$\log_5 25 = 2$$

d) 
$$\log_7\left(\frac{1}{7}\right) = -1$$

e) 
$$\log_{13} 1 = \bigcirc$$

f) 
$$\log_{25} 5 = 1/2$$

i) 
$$\log_2(-4)$$
 undefined

$$g) \log_5\left(\frac{1}{125}\right) = -3$$

h) 
$$\log_{81} 27 = 3/4$$

$$\int \log_{25} \left(\frac{1}{5}\right) = -\frac{1}{2}$$

$$\log_{5} 5^{5D} = 5D$$

$$k) \log_{4} \left( \stackrel{100}{\diamondsuit} \right) = 100$$

$$0, \stackrel{100}{\diamondsuit} \neq 1$$

### Special Logarithms

**SPECIAL LOGARITHMS** A **common logarithm** is a logarithm with base 10. It is denoted by  $\log_{10}$  or simply by  $\log$ . A **natural logarithm** is a logarithm with base e. It can be denoted by  $\log_e$ , but is more often denoted by  $\ln$ .

#### **Common Logarithm**

$$\log_{10} x = \log x$$

$$\log_e x = \ln x$$

Most calculators have keys for evaluating common and natural logarithms.

base 10

$$|Dg_{0}| = 0 |Dg_{10}|0$$

$$|Dg_{0}| = 1 |Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

$$|Dg_{10}|0$$

a) 
$$log 100 = 2$$

b) 
$$\log\left(\frac{1}{10}\right) = \log_{10} 0^{-1} = -1$$

c) 
$$\log .001 = \log \frac{1}{1000} = -3$$

d) 
$$\ln 1 = D$$

e) 
$$\ln(\frac{1}{e}) = \ln e^{-1} = \log_e e^{-1} = -1$$

$$\int \ln e^2 = 2$$
  $\log_4 4 = 1$ 

$$\log_8 8 = 1$$

$$\log_8 8 = 1$$

$$\log_8 8 = 1$$

g) 
$$\ln e = 1$$
  $\log_e e = 1$ 



ex: Evaluate on your calculator.

a) 
$$\log 16 = 1.204$$

b) 
$$\ln 7 = 1.946$$

## Logarithms and Exponentials are INVERSES!

$$f(x) = \log_b x \qquad \qquad g(x) = b^x$$
 ex: Evaluate.

a) 
$$(f \circ g)(x) = \log_b b^{\times} = \times$$

a) 
$$(f \circ g)(x) = | \log_b b^{\times} = \times$$
  $2^{\log_2 x}$   
b)  $(g \circ f)(x) = | \log_b x^{\otimes} = \times$   $2^3$ 

a) 
$$7^{\log_7 x} = \chi$$

b) 
$$\log_{62} 62^x = \times$$

c) 
$$\log 10^x = X$$

d) 
$$e^{\ln 7} = 7$$

e) 
$$\log_5 25^x = 2x$$
  
 $\log_5 5^{2x}$ 

f) 
$$\log_{64} 4^y = \frac{1}{3} \frac{1}{3}$$
  
 $64^D = 4^{\frac{1}{3}}$ 

## **REVIEW - Exponent Properties**

$$b^m \cdot b^n = \bigcup_{m \to \infty} m + \infty$$

$$\frac{b^m}{b^n} = \int_{-\infty}^{\infty} m - n$$

Logarithm Properties

$$(P_{\mathbf{w}})_{\mathbf{v}} = P_{\mathbf{w}\mathbf{v}}$$

Let *b*, *m*, and *n* be positive numbers such that  $b \neq 1$ .

**Product Property**  $\log_b$ 

$$\log_b(mn) = \log_b M + \log_b \Omega$$

**Quotient Property** 

$$\log_b \frac{m}{n} = \log_b M - \log_b \Omega$$

**Power Property** 

$$\log_b m^n = \bigcap \log_b m$$

Logarithm properties are used to EXPAND and CONDENSE logarithmic expressions.

ex: Expand. and Simplify

a) 
$$\log_3\left(\frac{abc}{9d}\right) = \log_3\Omega + \log_3b + \log_3C - \log_3q - \log_3d$$
  

$$= \log_3\Omega + \log_3b + \log_3C - 2 - \log_3d$$

ex: Expand.

ex: Expand.  
b) 
$$\log_5\left(\frac{a^2b^3}{c^4}\right) = \log_5\Omega + \log_5b^3 - \log_5C^4$$
  
=  $2\log_5\Omega + 3\log_5b - 4\log_5C$ 

c) 
$$\log\left(\frac{100a^2}{b^3c}\right) = |pg|M + |pgu - |pgb - |pgc|$$
  
=  $2 + 2|pga - 3|pgb - |pgc|$ 

ex: Expand.

d) 
$$\ln\left(\frac{1}{ab^2c^3}\right) = -\ln a - \ln b^2 - \ln c^3$$
  
=  $-\ln a - 2\ln b - 3\ln c$ 

e) 
$$\log_3(a+b^2) = \log_3(a+b^2)$$

ex: Expand.

f) 
$$\log_4\left(\frac{a+b}{a^2-b^2}\right)$$

$$\log_4\left(\frac{a+b}{a^2-b^2}\right)$$

$$\log_4\left(\frac{a+b}{a^2-b^2}\right)$$

$$\log_4\left(\frac{a+b}{a-b}\right)$$

$$\log_4\left(\frac{a+b}{a-b}\right)$$

9) 
$$\log_2(a^2 - b^2) = \log_2(a+b)(a-b)$$

$$\log_2(a+b) + \log_2(a-b)$$

ex: Expand.

h) 
$$\log_3(a-b)^7 = 7 \log_3(a-b)$$

i) 
$$\ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x^3 (a+1)^5} \right)^2 = \frac{1}{2} \ln \left( \frac{y^3 + z}{x$$

ex: Condense.

a) 
$$2\log_5 a - 3\log_5 b + 4\log_5(c+d)$$
  
 $\log_5 a^2 - \log_5 b^3 + \log_5(c+d)^4$   
 $\log_5 \left(\frac{a^2(c+d)^4}{b^3}\right)$ 

ex: Condense.

b) 
$$\frac{1}{2}\log x + \frac{3}{2}\log y - 10\log z$$

ex: Condense.

c) 
$$-3\log x - 4\log y - \frac{2}{3}\log z = |\eta \zeta \chi^{2} - |\eta \zeta \chi^{2}$$