3.4 Inverse Functions

*See printout.

f and g are inverse functions if

$$(f \circ g)(x) = X$$

$$(f \circ g)(x) = X$$
AND
 $(g \circ f)(x) = X$

Verifying Inverse Functions

1. Algebraically

Show:
$$(f \circ g)(x) = x$$
 AND $(g \circ f)(x) = x$

ex 1: Show
$$f(x) = 4x + 9$$
 and $g(x) = \frac{x - 9}{4}$
are inverses, algebraically $(x - 9)(x) = 4(\frac{x - 9}{4}) + 9 = x - 9 + 9 = x$
 $(g \circ f)(x) = 4x + 9 - 9 = 4x = x$

Verifying Inverse Functions

2. Graphically

show: f(x) and g(x) reflect

Over y=X (0,1)/

Verifying Inverse Functions

3. Numerically (NOT A PROOF)

show: for f(x) g(x)
(a,b) (b,a)
for all
coordinates

ex 3: Are $f(x) = x^2$ and $g(x) = \sqrt{x}$ inverses?

a) Prove your answer graphically.

ex 3: Are
$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$ inverses?

b) Prove your answer algebraically.

$$(f \circ g)(x) = (\sqrt{x}) = x$$

$$(g \circ f)(x) = \sqrt{x^2} = |x|$$

$$(f \circ g)(x) \neq (f \circ f)(x) :$$

$$not inverses$$

No.

The Existence of an Inverse

Examples of functions that DO have inverses:

Examples of functions that DO NOT have inverse functions.

The Existence of an Inverse

A function has an inverse function if it passes BOTH the vertical line test (VLT) and horizontal line test(HLT).

always increasing or always decreasing

One-To-One

A function is <u>one-to-one</u> if it passes BOTH the vertical line test (VLT) and horizontal line test(HLT).

Inverse Notation

$$f^{-1}(x)$$

$$\chi^{-1} = \frac{1}{x}$$

NOTE:
$$f^{-1}(x) \neq [f(x)]^{-1}$$
 or $\frac{1}{f(x)}$

ex 4: Determine whether each function has an inverse function.

a)
$$f(x) = x+1$$
 $1 \le 5$

b)
$$f(x) = x^4 - x^2 + 7$$

c)
$$f(x) = -3x^2 + 4x + 5$$

ex 5:Determine whether each function has an inverse function.

 $(x) = \sqrt{x}$ Yes

ex 6: Sketch the inverse function, if it exists.

a)

ex 6: Sketch the inverse function, if it exists.

b)

ex 6: Sketch the inverse function, if it exists.

c)

ex 7: Match each graph with the graph of its inverse.

ex 8: Find the indicated values, if possible.

a)
$$f^{-1}(3) = -3$$

b)
$$g^{-1}(0) = -1$$

c)
$$g^{-1}(1)$$

d)
$$f^{-1}(0) = \bigcirc$$

ex 8: Find the indicated values, if possible.

e)
$$(f \circ g)(-1)$$
 =

f)
$$(g \circ f)(-2) = 1.5$$

g)
$$(f \circ g^{-1})(1)$$

h)
$$(g \circ (f^{-1})(-1)) = 1.5$$

ex 8: Find the indicated values, if possible.

i)
$$(f \circ (f^{-1})(2)) = 2$$

$$\int_{-2.5}^{10} (g^{-1} \circ (f^{-1})(2)) = -2.5$$

Finding Inverses

ex 9: Find the inverse, if possible.

a)
$$f(x) = \frac{5-3x}{2}$$

$$\frac{\chi}{1} = \frac{5-3y}{2}$$

$$2x = 5-3y$$

3) Set inverse equal to f -1

$$2x-5=-3y$$

$$2x-5=-3$$

$$2x-5=-3$$

$$2x-5=-3$$

$$-3=-3$$

ex 9: Find the inverse, if possible.

b)
$$g(x) = \sqrt[3]{x+8}$$

 $\chi = \sqrt[3]{y+8}$
 $\chi^3 = \sqrt{y+8}$
 $\chi^3 = \sqrt{y+8}$

ex 9: Find the inverse, if possible.

c)
$$y = \frac{2}{x+1}$$

 $x = \frac{2}{y+1}$
 $x = \frac{2}{y+1}$
 $x = \frac{2}{y+1}$
 $x = \frac{2}{y+1}$
 $x = \frac{2}{x+1}$
 $x = \frac{2}{x+1}$
 $x = \frac{2}{x+1}$
 $x = \frac{2}{x+1}$
 $x = \frac{2}{x+1}$

$$y = \frac{\chi + 3}{\chi - 1}$$

$$X = \frac{y + 3}{y - 1}$$

$$xy - x = y + 3$$

$$y(x - x) = x + 3$$

$$y(x - x) = x + 3$$

$$y(x - x) = x + 3$$

$$x - 1$$

ex 9: Find the inverse, if possible.

d)
$$h(x) = x^2 - 5x + 1$$

d)
$$h(x) = x^2 - 5x + 1$$

$$\chi = \sqrt{-5} + 1$$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$

a)
$$f^{-1}(0) = -4$$

 $0 = x + 4$
 $-4 = x$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$

b)
$$g^{-1}(2)$$
 $2 = \sqrt{X_2} - S$
 $7 = \sqrt{X}$
 $49 = X$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$

c)
$$h^{-1}(2) = 1$$
 $2 = x + x$
 $= x^{2} + x - 2$
 $= (x + 2)(x - 1)$
 $(-x)$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$
Find the indicated value.

a)
$$(g^{-1} \circ (f^{-1})(-1)) \neq 0$$

$$5 = \sqrt{X} - 5$$

$$-1 = X + Y$$

$$-5 = X$$

$$0 = X$$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$

Find the indicated value

$$\begin{array}{c}
(h \circ g^{-1})(0) \\
h(25) = 25^2 + 25 = 650
\end{array}$$

$$\begin{array}{c}
h(25) = 25^2 + 25 = 650
\end{array}$$

$$f(x) = x + 4$$
 $g(x) = \sqrt{x} - 5$ $h(x) = x^2 + x, x \ge -\frac{1}{2}$

$$f)\left(f\circ f^{-1}\right)\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = G$$