1.8 Quadratic Formula Cont. Quadratic Words Problems

Recall the Quadratic Formula:

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Ex 1: Solve.

a)
$$x^2 + 3x + 1 = 3$$

b)
$$-x^{2} + 5x - 4 = x + 1$$

 $-x^{2} + 4x - 5 = 0$
 $-1(x^{2} - 4x + 5) = 0$
 $a = 1$
 $b = -4$
 $c = 5$
 $4 = \frac{4 \pm \sqrt{16 - 4(1)(5)}}{2(1)} = 2 \pm i$
 $4 = \frac{4 \pm 2i}{3} = \frac{4 \pm 2i}{2}$

c)
$$x^2 = 6x - 4$$

 $\chi^2 - 6x + 4 = 0$

The Discriminant:

- In the quadratic formula, the expression b 4ac is called the discriminant.
- The discriminant is used to determine the

types of solutions for the quadratic equation.

Using The Discriminant: $D = b^2 - 4ac$

Value of discriminant	D>0	D = 0	DKO
Number of solutions	2	}	2
Type of solutions	real	real	imaginary
Graph of $y = ax^2 + bx + c$	1	ver-lex on X-axis	never crosses

ex 2: Find the discriminant and give the number and type of solutions of the equation.

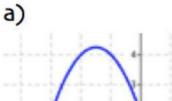
a)
$$x^{2}-8x+13=-4$$

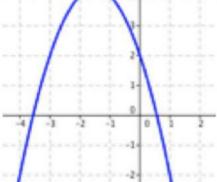
 $\chi^{2}-8x+17=0$
 $y^{2}-8x+17=0$
 $y^{2}-4ac$
 $y^{2}-4ac$

2 imaginary solutions

b)
$$x^2 - 8x + 16 = 0$$

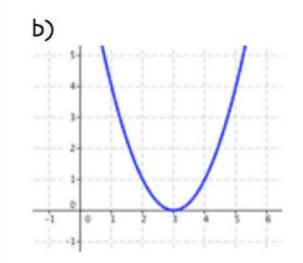
$$D = 64 - 4(1)(16) \\ = 0$$


I real solution


c)
$$8x^{2}-2x+1=x^{2}+6$$

 $7x^{2}-2x-5=0$
 $=(-2)^{2}-4(7)(-5)$
 $=4+140$
 $=144$
(2 real)

Fun fact: if the discriminant is zero or a perfect square, the equation is FACTORABLE.


$$7x^{2}-2x-5=0$$

 $(7x+5)(x-1)=0$
 $x=-\frac{5}{7}$

ex 3: The graph of $y = ax^2 + bx + c$ or the solutions of $ax^2 + bx + c = 0$ are given. Determine if the discriminant is positive, negative, or zero. Explain your reasoning.

positive; parabola intercepts the X-axis at 2 points.

O; parabolas vertex is on the x-axis. c) $x = 2 \pm 3i$

Negative; Imaginary Solutions mean the disciminant is less than O. ex 4: Consider the quadratic equation: $3x^2 + 12x + c = 0$ Find all values of c for which the equation has...

a) two real solutions (when D > 0)

$$b^{2}-4ac > 0$$
 $A=3$
 $144-4(3)(c)>0$
 $b=12$
 $144-12c>0$
 $c=c$
 $-12c>-144$
 $(c<12)e$

b) one real solution
$$D = 0$$

 $b^2 - 4ac = 0$
 $12^2 - 4(3)(c) = 0$
 $144 - 12c = 0$
 $c = 12$

 ex 5: Determine which method is best to solve each quadratic equation. Do not repeat a method. DO NOT SOLVE.

a)
$$2x^2 - 6x + 1 = 0$$

b) $-2x^2 - 7x + 15 = 0$

c)
$$6-2(x+1)^2=0$$

d)
$$3x^2 - 12x - 14 = 0$$

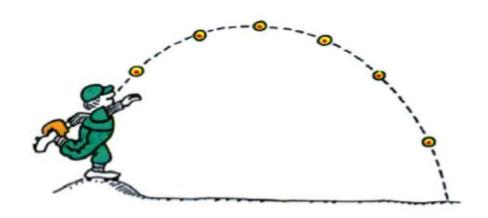
Factor 59. root Ruad form , CTS

ex 5: Determine which method is best to solve each quadratic equation. Do not repeat a method. DO NOT SOLVE.

a)
$$2x^{2} - 6x + 1 = 0$$
 $\chi = \frac{6 \pm \sqrt{7}}{4} = \frac{3}{2} \pm \frac{17}{2}$
b) $-2x^{2} - 7x + 15 = 0$ $-(2x^{2} + 7x - (5)) = 0$
 $\chi = \frac{3}{2}, -5$ $-(2x - 3)(x + 5) = 0$
c) $6 - 2(x + 1)^{2} = 0$ $3 = (x + 1)^{2}$
 $-1 \pm \sqrt{3}$ $3(x^{2} + 4x + 4) - (4 - 1)^{2} = 0$
 $3(x^{2} + 4x + 4) - (4 - 1)^{2} = 0$
 $3(x^{2} - 2)^{2} = 26$
 $\chi = 2 \pm \frac{176}{3}$

Quadratic Word Problems

Review:


• When given a quadratic function in standard form, how do you find the vertex? $\chi = \frac{b}{2a}$; plug in this valve to get y

• How do you find the maximum/minimum value of quadratic function?

y-value of vertex

Falling Objects

- 1. The height of a rocket launched upward from a 160-foot cliff is modeled by $h(t) = -16t^2 + 48t + 160$ where h(t) is the height in feet and t is the time in seconds.
- a) What is the initial height of the rocket? What is the height of the rocket after 1 sec?

$$E = 0$$
; $h(0) = 160 f + 1 f + 160 = 192 f$

1. The height of a rocket launched upward from a 160-foot cliff is modeled by $h(t) = -16t^2 + 48t + 160$ where h(t) is the height in feet and t is the time in seconds.

b) At what time does the rocket reach its maximum height?

$$\chi = \frac{b}{2a} = \frac{-48}{2(-1b)} = \frac{3}{2} = 1.5$$

1. The height of a rocket launched upward from a 160-foot cliff is modeled by $h(t) = -16t^2 + 48t + 160$ where h(t) is the height in feet and t is the time in seconds.

c) What is the maximum height?

hat is the maximum height?

$$h\left(\frac{3}{2}\right) = -16\left(\frac{3}{2}\right) + 48\left(\frac{3}{2}\right) + 160$$

$$= -16\left(\frac{3}{2}\right) + 48\left(\frac{3}{2}\right) + 160$$

$$= -16\left(\frac{3}{2}\right) + 48\left(\frac{3}{2}\right) + 160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -160$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

$$= -36$$

- 1. The height of a rocket launched upward from a 160-foot cliff is modeled by $h(t) = -16t^2 + 48t + 160$ where h(t) is the height in feet and t is the time in seconds.
- d) At what time does the rocket hit the ground?

ground
$$0 = -16t^2 + 48t + 160$$

 $0 = -16(t^2 - 3t - 10)$
 $-16(t - 5)(t + 2)$
 $-16(t - 5)(t + 2)$
 $t = 5 \sec 6$

2. The height of a flare fired from the deck of a ship in distress can be modeled by $h = -16t^2 + 112t + 56$ water in feet and t is the time in seconds. At what time(s) will the flare be at a height of 56 feet?

$$566 = -166t + 112t + 56$$

$$0 = -16t (t - 7)$$

$$(t = 0.72)$$