A2 Reference Sheet

Number Sets

Number Set	Symbol	Definition
Real	\mathbb{R}	A real number is a value that can be represented as a quantity on a continuous number line.
Rational	Q	A rational number is any quantity that can be expressed as the ratio of two integers. Ex: 4(since 4 = $\frac{8}{2}$), 1.2 (since 1.2 = $\frac{12}{10} = \frac{6}{5}$), $-\sqrt{9}$ (since $-\sqrt{9} = -3 = \frac{-3}{1}$, etc.
Integers	\mathbb{Z}	The set of integers contains whole numbers, negative whole numbers and zero. $Z{=}\{{}^2, {}^2, {}^2, {}^2, {}^3, {}^3\}$
Whole	w	Whole numbers are nonnegative integers W={0, 1, 2, 3}
Natural	\mathbb{N}	Natural numbers are positive integers. This set is commonly referred to as the "counting" numbers set. $N=\{\eta,2,3\}$
Digits	D	A digit is any number that can be found in a phone number. D={0, 1, 29}
Irrational	I.	An irrational number is any quantity that can NOT be expressed as a fraction (any nonrepeating & nonterminating decimal) Ex: π , $\sqrt{2}$
Transcendental	т	Transcendental numbers are numbers that are NOT the solution to an algebraic equation. Ex: π , ϕ (phi – the golden number), e

Quadratic Functions

Forms					
Form	Equation				
Standard Forr	$\begin{array}{c} m \\ y = ax^2 + bx + c \end{array}$	• The x-coordinate of	of the verte	x is $x = -\frac{b}{2a}$	
		• The axis of symme	etry is $x = -$	$\frac{b}{2a}$	
Vertex Form	$y = a(x-h)^{2} + k$ m $y = a(x-p)(x-q)$	• The vertex is (h, k))		
Intercept For	m y = a(x-p)(x-q)) • The x-intercepts a	re $x = p$ ar	nd $x = q$.	
		• The x-coordinate of	of the verte	x is the average of the x-intercepts.	
raphing Quadr	atics – plot the vertex a	nd two other points, one t	o the left ar	nd one to the right of the vertex.	
Parent Function:	$y = x^2$	$y = ax^2 + bx + c, a > a$	> 0	$y = ax^2 + bx + c, \ a < 0$	
	- 2				
		MINIMUM value at the vertex		MAXIMUM value at the vertex	
omplex Numbe	ers: a+bi (standard i	form)			
	Rationalizing with C	omplex Numbers			
lmaginary Numbers:	Ex: $\frac{3+i}{7i}$		Ex: $\frac{3+i}{7-i}$		
$\sqrt{-1} = i$		ator and denominator by		Y the numerator and denominator by	
Powers of i	i			gate of the denominator, $7 + i$	
	3	$\frac{i}{7i} \cdot \frac{i}{i}$		$\frac{3+i}{7-i} \cdot \frac{7+i}{7+i}$	
$i^1 = i$		7i i $i + i^2$		$21 + 10i + i^2$	
$i^2 = -1$	<u></u>	$\frac{1+i}{7i^2}$		$\frac{1}{49-i^2}$ 21+10 <i>i</i> -1	
$i^3 = -i$		<u>i – 1</u> –7	49+1 20+10 <i>i</i>		
$i^4 = 1$				$\frac{20+107}{50}$	
l = 1	$\frac{1}{7}$	$-\frac{3}{7}i$		$\frac{2}{5} + \frac{1}{5}i$	
	1	1		د د	

Completing the Squa						
	• Rewrite a q	g the square to uadratic function fro rm to vertex form.		ve quadrat m.	ic equations in standard	
	y = 2x	$y = 2x^2 + 12x + 10$		$x^2 - 4x + 5 = 0$		
To complete the	$y = 2(x^2 + 6x \) \+ 10$			(x^2-4x)	·)+ 5 = 0	
square:	y = 2($x^{2} + 6x + 9 - 18 + 10$		(x^2-4x)	(+4) - 4 + 5 = 0	
$\left(\frac{b}{2a}\right)^2$	y = 2($(x+3)^2-8$		$(x-2)^2$	+1 = 0	
(2a)			$\left(x-2\right)^2 = -1$			
			$\sqrt{\left(x-2\right)^2} = \sqrt{-1}$			
				x-2 = 1		
				$x-2 = \pm$		
4 Methods to Solve (Quadratic Equ	ations		$x = 2 \pm i$		
Eactoring – Use when $ax^2 + bx + c = 0$ and c has a set of factors that	n <u>Square</u> $ac ax^2 + c =$	<u>Roots</u> - Use when = 0 or	Completing the - Use when $ax^2 + bx + c = 0$		Quadratic Formula – Use when $ax^2 + bx + c = 0$ (*Convenient when a,b,c are <i>small</i> .)	
sum to <i>b</i>	a(x-h)	$k^{2} + k = 0$	(*Convenient whe <i>even</i>)	$\frac{a}{a}$ is	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
The discriminant: b^2 *Use the discriminant to If $b^2 - 4ac > 0$, • Number of Solutions: • Type of Solutions: • The graph of $y = a$ has two x-intercept	determine the r ns: 2 distinct real $x^2 + bx + c$	If $b^2 - 4ac = 0$,	utions: 1 repeated ons: real $a^2 = ax^2 + bx + c$	If $b^2 - 4$ • Num • Type • The c		
Factoring		How Ma	ny Terms?			
Two Terms Three Terms Four Terms GCF GCF GCF						
Sum of Two Squares $a^{2} + b^{2}$ PRIME Sum/Difference of Two Cubes $a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$						

Polynomial Functions

▶ The zeros of f are -1, 4, and 5.

Rule

 $\sqrt[n]{x^n} = x$

 $\sqrt[n]{x^n} = |x|$

Example

 $\sqrt[4]{32xy^4x^8} = 2x^2|y|\sqrt[4]{2x}$

 $\sqrt[3]{64x^3y^5} = 4xy\sqrt[3]{y^2}$

Simplifying Roots

When *n* is

When *n* is

bbo

even

Rational Exponents and Radical Functions Rational Exponents

$\sqrt[n]{a^m} = a^{m/n}$ ex: Evaluate. $4^{5/2} = (\sqrt{4})^5 = (2)^5 = 32 \quad (\text{easiest to take the root first!})$ ex: Simplify. a) $\sqrt[3]{135} = \sqrt[3]{27 \cdot 5} = 3\sqrt[3]{5} \quad (\text{look for perfect powers})$

a) $\sqrt[3]{135} = \sqrt[3]{27 \cdot 5} = 3\sqrt[3]{5}$ (look for perfect powers) b) $\frac{\sqrt[5]{2}}{\sqrt[5]{9}} = \frac{\sqrt[5]{2}}{\sqrt[5]{3^2}} \cdot \frac{\sqrt[5]{3^3}}{\sqrt[5]{3^3}} = \frac{\sqrt[5]{54}}{3}$

Function Operations

Operation	Definition	Example: $f(x) = x^2 - 3$, $g(x) = x + 2$	
Addition	(f+g)(x) = f(x) + g(x)	$(f+g)(x) = x^2 - 3 + x + 2 = x^2 + x - 1$	
Subtraction	(f-g)(x) = f(x) - g(x)	$(f-g)(x) = x^2 - 3 - (x+2) = x^2 - x - 5$	
Multiplication	(fg)(x) = f(x)g(x)	$(fg)(x) = (x^2 - 3)(x + 2) = x^3 + 2x^2 - 3x - 6$	
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$\left(\frac{f}{g}\right)(x) = \frac{x^2 - 3}{x + 2}$	
Compositions	$(f \circ g)(x) = f(g(x))$	$(f \circ g)(x) = f(x+2) = (x+2)^2 - 3 = x^2 + 4x + 1$	
	$(g \circ f)(x) = g(f(x))$	$(g \circ f)(x) = g(x^2 - 3) = x^2 - 3 + 2 = x^2 - 1$	

Inverse Functions

Properties of Inverse Functions

- If f(x) and g(x) are inverse functions then...
 - $(f \circ g)(x) = x \operatorname{AND}(g \circ f)(x) = x$
 - The graphs of f(x) and g(x) are reflections about the line y = x
 - The domain of f(x) is the range of g(x).
 - The range of f(x) is the domain of g(x).
 - If f(x) contains the point (a, b) then g(x) contains the point (b, a)

Exponential ar	nd Logarithmic Functions					
Exponential F "b" is the growt	Functions: $y = ab^x$ ($a \neq 0$, $b > b$ /decay factor	0, <i>b</i> ≠1)	1			
	then $y = ab^x$ represents expo	nential	If $b > 1$, then $y = ab^x$ represents exponential <u>growth</u> .			
Ex: $y = 2\left(\frac{1}{4}\right)^{+}$	$y = 2\left(\frac{1}{4}\right)^{x}$ (0, 2) (1, 1) (1, 1) (1, 2) (1, 2)	he	Ex: $y = -\left(\frac{5}{2}\right)^x$	$\frac{y}{(0,-1)} + \frac{x}{x}$ $\frac{y}{(1,-\frac{5}{2})}$ $\frac{y}{y} = -(\frac{5}{2})^{x}$ de of the graph MOVES AWAY from the	e	
	nential Equations					
Case	es Make the bases equal $9^{x-2} = 27^{2x-5}$	$2 \cdot 5^{x+4}$ –	ke the bases equal $\cdot 9 = -3$	$Quadratic Form$ $3^{2x} + 3^{x} - 12 = 0$		
	$(3^2)^{x-2} = (3^3)^{2x-5}$	$5^{x+4} = 3$		$(3^x)^2 + 3^x - 12 = 0$		
	$3^{2x-4} = 3^{6x-15}$	``	$^{+4}) = \log_5(3)$	Let $u=3^x$		
	2x - 4 = 6x - 16	x + 4 = 1	og ₅ 3	$u^2 + u - 12 = 0$		
	$12 = 4x \qquad \qquad x =$			(u-3)(u-4) = 0		
	<i>x</i> = 3	x = -3.3	518	u = 3, u = 4		
				$3^x = 3, 3^x \neq 4$		
				<i>x</i> = 1		
Logarithm Pro	A checkless data and an absorb 12 hours all cancel	12010-00-0				
	n be positive numbers such that	Expand $\log_6 \frac{5x^3}{y}$.				
Product Property $\log_b mn = \log_b m + \log_b n$						
Quotient Property $\log_b \frac{m}{n} = \log_b m - \log_b n$			$\log_6 \frac{5x^3}{y} = \log_6 5x^3 - \log_6 y$ Quotient property			
Power Propert	Power Property $\log_b m^n = n \log_b m^n$			$= \log_6 5 + \log_6 x^3 - \log_6 y $ Product property $= \log_6 5 + 3 \log_6 x - \log_6 y $ Power property		

Change-of-Base Formula If <i>a</i> , <i>b</i> , and <i>c</i> are positive numbers with $b \neq 1$ and $c \neq 1$, then: $\log_c a = \frac{\log_b a}{\log_b c}$ In particular, $\log_c a = \frac{\log a}{\log c}$ and $\log_c a = \frac{\ln a}{\ln c}$.	Using common logarithms: $\log_3 8 = \frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} \approx 1.893$ Using natural logarithms: $\log_3 8 = \frac{\ln 8}{\ln 3} \approx \frac{2.0794}{1.0986} \approx 1.893$
	rm on each side
$3\ln(x-4) + 2 = -4$	$\log 2x + \log(x - 5) = \log(100)$
$\ln(x-4) = -2$	$\log(2x^2 - 10x) = \log(100)$
$e^{\ln(x-4)} = e^{-2}$	$10^{\log(2x^2-10x)} = 10^{\log(100)}$
$x - 4 = e^{-2}$	$\frac{10}{2x^2 - 10x} = 100$
$x = 4 + e^{-2}$	$2x^{2} - 10x = 100$ $2x^{2} - 10x - 100 = 0$
x = 4.135	$x^2 - 5x - 50 = 0$
	(x-10)(x+5) = 0
	x = 10, x = -5
	x = -5 is extraneous, the answer is $x = 10$
Compound Interest	
Interest Compounded n times per year • A is the final amount	Interest Compounded Continuously
• A is the final amount • P is the initial amount • P is the initial amount • r is the interest rate, in <u>decimal</u> form • t is the time in <u>years</u> • n is the number of times the interest is compounded per year	 A is the final amount P is the initial amount r is the interest rate, in <u>decimal</u> form t is the time in <u>years</u>

Domain Restrictions

$y = \frac{f(x)}{g(x)}$ Domain: $\left\{x g(x) \neq 0\right\}$ Ex: $y = \frac{x^2 + 9}{x - 2}$, $\left\{x x \neq 2\right\}$ Ex: $y = \frac{x - 2}{x^2 + 9}$, $\left\{x x \in R\right\}$ Even Roots: $y = \sqrt[n]{f(x)},$ Domain: $\left\{x f(x) \ge 0\right\}$ Ex: $y = 2\sqrt{x + 7} - 3$, $\left\{x x \ge -7\right\}$ Logarithms: $y = \log_b(f(x))$ $x f(x) \ge 0$ Ex: $y = -2\ln x + 4$, $\left\{x x > 0\right\}$	Fractions:				
Logarithms: $y = \sqrt[n]{f(x)}, \text{Domain:} \left\{ x f(x) \ge 0 \right\} \text{Ex: } y = 2\sqrt{x+7} - 3, \left\{ x x \ge -7 \right\}$		$y = \frac{f(x)}{g(x)}$	Domain: $\left\{ x g(x) \neq 0 \right\}$	Ex: $y = \frac{x^2 + 9}{x - 2}$, $\{x x \neq 2\}$ Ex: $y = \frac{x - 2}{x^2 + 9}$, $\{x x \in R\}$	
Logarithms: $Domain:$	Even Roots:		Domain: $\left\{ x \middle f(x) \ge 0 \right\}$	Ex: $y = 2\sqrt{x+7} - 3$, $\{x x \ge -7\}$	
	Logarithms:			Ex: $y = -2\ln x + 4$, $\{x x > 0\}$	