Number Sets

Number Set	Symbol	Definition
Real	\mathbb{R}	Areal number is a value that can be represented as a quantity on a continuous number line.
Rational	(1)	A rational number is any quantity that can be expressed as the ratio of two integers. Ex: $4\left(\right.$ since $\left.4=\frac{8}{2}\right), 1.2\left(\right.$ since $\left.1.2=\frac{12}{10}=\frac{6}{5}\right),-\sqrt{9}\left(\right.$ since $-\sqrt{9}=-3=\frac{-3}{1}$, etc.
Integers	$7 /$	The set of integers contains whole numbers, negative whole numbers and zero. $Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$
Whole	W	Whole numbers are nonnegative integers $W=\{0,1,2,3 \ldots\}$
Natural	N	Natural numbers are positive integers. This set is commonly referred to as the "counting" numbers set. $N=\{1,2,3 \ldots\}$
Digits	D	A digit is any number that can be found in a phone number. $D=\{0,1,2 \ldots .9\}$
Irrational	1	An irrational number is any quantity that can NOT be expressed as a fraction (any nonrepeating \& nonterminating decimal) $\mathrm{Ex}: \pi, \sqrt{2}$
Transcendental	T	Transcendental numbers are numbers that are NOT the solution to an algebraic equation. Ex: π, ϕ (phi - the golden number), e

Quadratic Functions

3 Forms		
Form	Equation	
Standard Form	$y=a x^{2}+b x+c$	- The x -coordinate of the vertex is $x=-b / 2 a$ - The axis of symmetry is $x=-b / 2 a$
Vertex Form	$y=a(x-h)^{2}+k$	- The vertex is (h, k)
Intercept Form	$y=a(x-p)(x-q)$	- The x-intercepts are $x=p$ and $x=q$. - The x-coordinate of the vertex is the average of the x-intercepts.

Graphing Quadratics - plot the vertex and two other points, one to the left and one to the right of the vertex.

$y=a x^{2}+b x+c, a>0$

MINIMUM value at the vertex
$y=a x^{2}+b x+c, a<0$

MAXIMUM value at the vertex

Complex Numbers: $a+b i$ (standard form)

Completing the Square

To complete the square: $\left(\frac{b}{2 a}\right)^{2}$	Use completing the square to... - Rewrite a quadratic function from standard form to vertex form. $\begin{aligned} & y=2 x^{2}+12 x+10 \\ & y=2\left(x^{2}+6 x-1-+10\right. \\ & y=2\left(x^{2}+6 x+9\right)-18+10 \\ & y=2(x+3)^{2}-8 \end{aligned}$	- Solve quadratic equations in standard form. $\begin{aligned} & x^{2}-4 x+5=0 \\ & \left(x^{2}-4 x-\right)-5=0 \\ & \left(x^{2}-4 x+4\right)-4+5=0 \\ & (x-2)^{2}+1=0 \\ & (x-2)^{2}=-1 \\ & \sqrt{(x-2)^{2}}=\sqrt{-1} \\ & \|x-2\|=i \\ & x-2= \pm i \\ & x=2 \pm i \end{aligned}$

4 Methods to Solve Quadratic Equations

Factoring - Use when			
$a x^{2}+b x+c=0$ and $a c$ has a set of factors that sum to b	Square Roots - Use when $a x^{2}+c=0$ or $a(x-h)^{2}+k=0$	Completing the Square -Use when $a x^{2}+b x+c=0$	Quadratic Formula Use when $a x^{2}+b x+c$ (*Convenient when $\frac{b}{a}$ is (*Convenient when a, are small.)
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$			

The discriminant: $b^{2}-4 a c$
*Use the discriminant to determine the number and type of roots(solutions) of a quadratic equation.

If $b^{2}-4 a c>0$, - Number of Solutions: 2 distinct - Type of Solutions: real - The graph of $y=a x^{2}+b x+c$ has two x-intercepts.	If $b^{2}-4 a c=0$, - Number of Solutions: 1 repeated - Type of Solutions: real - The graph of $y=a x^{2}+b x+c$ has one x-intercept.	If $b^{2}-4 a c<0$, - Number of Solutions: 2 distinct - Type of Solutions: imaginary - The graph of $y=a x^{2}+b x+c$ has NO x-intercepts.

Factoring

Exponent Properties Property Name	Definition	Example
Product of Powers	$a^{m} \cdot a^{n}=a^{m+n}$	$5^{3} \cdot 5^{-1}=5^{3+(-1)}=5^{2}=25$
Power of a Power	$\left(a^{m}\right)^{n}=a^{m n}$	$\left(3^{3}\right)^{2}=3^{3 \cdot 2}=3^{6}=729$
Power of a Product	$(a b)^{m}=a^{m} b^{m}$	$(2 \cdot 3)^{4}=2^{4} \cdot 3^{4}=1296$
Negative Exponent	$a^{-m}=\frac{1}{a^{m}}, a \neq 0$	$7^{-2}=\frac{1}{7^{2}}=\frac{1}{49}$
Zero Exponent	$a^{0}=1, a \neq 0$	$(-89)^{0}=1$
Quotient of Powers	$\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$	$\frac{6^{-3}}{6^{-6}}=6^{-3-(-6)}=6^{3}=216$
Power of a Quotient	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$	$\left(\frac{4}{7}\right)^{2}=\frac{4^{2}}{7^{2}}=\frac{16}{49}$

Finding Zeros Using The Rational Zero Theorem Find all real zeros of $f(x)=x^{3}-8 x^{2}+11 x+20$.

Remainder Theorem

Solution

If a polynomial $f(x)$ is divided by $x-k$, then the remainder is $r=f(k)$.

Factor Theorem

A polynomial $f(x)$ has a factor $x-k$ if and only if $f(k)=0$.

The Rational Zero Theorem

If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ has integer coefficients, then every rational zero of f has the following form:

$$
\frac{p}{q}=\frac{\text { factor of constant term } a_{0}}{\text { factor of leading coefficient } a_{n}}
$$

STEP 1 List the possible rational zeros. The leading coefficient is 1 and the constant term is 20 . So, the possible rational zeros are:

$$
x= \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}, \pm \frac{5}{1}, \pm \frac{10}{1}, \pm \frac{20}{1}
$$

STEP 2 Test these zeros using synthetic division.

Test $x=1$:

Because -1 is a zero of f, you can write $f(x)=(x+1)\left(x^{2}-9 x+20\right)$.
STEP 3 Factor the trinomial in $f(x)$ and use the factor theorem.
$f(x)=(x+1)\left(x^{2}-9 x+20\right)=(x+1)(x-4)(x-5)$

- The zeros of f are $-1,4$, and 5 .

Rational Exponents and Radical Functions

Rational Exponents

$$
\sqrt[n]{a^{m}}=a^{m / n}
$$

ex: Evaluate.

$$
4^{5 / 2}=(\sqrt{4})^{5}=(2)^{5}=32 \text { (easiest to take the root first!) }
$$

ex: Simplify.
a) $\sqrt[3]{135}=\sqrt[3]{27 \cdot 5}=3 \sqrt[3]{5}$ (look for perfect powers)
b) $\frac{\sqrt[5]{2}}{\sqrt[5]{9}}=\frac{\sqrt[5]{2}}{\sqrt[5]{3^{2}}} \cdot \frac{\sqrt[5]{3^{3}}}{\sqrt[5]{3^{3}}}=\frac{\sqrt[5]{54}}{3}$

Simplifying Roots

	Rule	Example
When n is odd	$\sqrt[n]{x^{n}}=x$	$\sqrt[3]{64 x^{3} y^{5}}=4 x y \sqrt[3]{y^{2}}$
When n is even	$\sqrt[n]{x^{n}}=\|x\|$	$\sqrt[4]{32 x y^{4} x^{8}}=2 x^{2}\|y\| \sqrt[4]{2 x}$

Function Operations

Operation	Definition	Example: $f(x)=x^{2}-3, g(x)=x+2$
Addition	$(f+g)(x)=f(x)+g(x)$	$(f+g)(x)=x^{2}-3+x+2=x^{2}+x-1$
Subtraction	$(f-g)(x)=f(x)-g(x)$	$(f-g)(x)=x^{2}-3-(x+2)=x^{2}-x-5$
Multiplication	$(f g)(x)=f(x) g(x)$	$(f g)(x)=\left(x^{2}-3\right)(x+2)=x^{3}+2 x^{2}-3 x-6$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$	$\left(\frac{f}{g}\right)(x)=\frac{x^{2}-3}{x+2}$
Compositions	$(f \circ g)(x)=f(g(x))$ $(g \circ f)(x)=g(f(x))$	$(f \circ g)(x)=f(x+2)=(x+2)^{2}-3=x^{2}+4 x+1$ $(g \circ f)(x)=g\left(x^{2}-3\right)=x^{2}-3+2=x^{2}-1$

Inverse Functions

Properties of Inverse Functions
If $f(x)$ and $g(x)$ are inverse functions then...

- $(f \circ g)(x)=x \operatorname{AND}(g \circ f)(x)=x$
- The graphs of $f(x)$ and $g(x)$ are reflections about the line $y=x$
- The domain of $f(x)$ is the range of $g(x)$.
- The range of $f(x)$ is the domain of $g(x)$.
- If $f(x)$ contains the point (a, b) then $g(x)$ contains the point (b, a)

Verify that $f(x)=3 x-5$ and $f^{-1}(x)=\frac{1}{3} x+\frac{5}{3}$ are inverse functions.

Solution

$$
\begin{aligned}
& \text { STEP } 1 \text { Show that } f\left(f^{-1}(x)\right)=x . \\
& \begin{array}{rlrl}
f\left(f^{-1}(x)\right) & =f\left(\frac{1}{3} x+\frac{5}{3}\right) \\
& =3\left(\frac{1}{3} x+\frac{5}{3}\right)-5 \\
& =x+5-5 \\
& =x \checkmark & \begin{aligned}
f^{-1}(f(x)) & \left.=f^{-1}(3 x-5)\right) \\
& =\frac{1}{3}(3 x-5)+\frac{5}{3}
\end{aligned} \\
\text { Show that } f^{-1}(f(x))=x .
\end{array} \\
&
\end{aligned}
$$

To find an Inverse:
Ex: $f(x)=x^{3}+4$

1. switch x and y	$x=y^{3}+4$
2. solve for y	$y=\sqrt[3]{x-4}$
3. label appropriately	$f^{-1}(x)=\sqrt[3]{x-4}$

.

Exponential and Logarithmic Functions

Exponential Functions: $y=a b^{x} \quad(a \neq 0, b>0, b \neq 1)$
" b " is the growth/decay factor
If $0<b<1$, then $y=a b^{x}$ represents exponential decay.
$\mathrm{Ex}: y=2\left(\frac{1}{4}\right)^{x}$

*notice the right side of the graph APPROACHES the asymptote
Solving Exponential Equations
Exponential Equations

Cases	Make the bases equal $9^{x-2}=27^{2 x-5}$	Can't make the bases equal $\left(3^{2}\right)^{x-2}=\left(3^{3}\right)^{2 x-5}$	$2 \cdot 5^{x+4}-9=-3$
$3^{2 x-4}=3^{6 x-15}$	$5^{x+4}=3$	Quadratic Form $^{3 x}+3^{x}-12=0$	
$2 x-4=6 x-16$	$\log _{5}\left(5^{x+4}\right)=\log _{5}(3)$	$\left(3^{x}\right)^{2}+3^{x}-12=0$	
$12=4 x$	$x+4=\log _{5} 3$	Let $\mathrm{u}=3^{x}$	
$x=3$	$x=-4+\log _{5} 3$	$u^{2}+u-12=0$	
	$x=-3.318$	$(u-3)(u-4)=0$	
		$u=3, u=4$	
			$3^{x}=3,3^{x} \neq 4$
		$x=1$	

Logarithm Properties

Let b, m, and n be positive numbers such that $b \neq 1$.
Product Property $\quad \log _{b} m n=\log _{b} m+\log _{b} n$
Quotient Property
Power Property
$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
$\log _{b} m^{n}=n \log _{b} m$

If $b>1$, then $y=a b^{x}$ represents exponential growth.
$\mathrm{Ex}: y=-\left(\frac{5}{2}\right)^{x}$

*notice the right side of the graph MOVES AWAY from the asymptote

Change-of-Base Formula

If a, b, and c are positive numbers with $b \neq 1$ and $c \neq 1$, then:

$$
\log _{c} a=\frac{\log _{b} a}{\log _{b} c}
$$

In particular, $\log _{c} a=\frac{\log a}{\log c}$ and $\log _{c} a=\frac{\ln a}{\ln c}$.

Using common logarithms: $\log _{3} 8=\frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} \approx 1.893$
Using natural logarithms: $\log _{3} 8=\frac{\ln 8}{\ln 3} \approx \frac{2.0794}{1.0986} \approx 1.893$

Solving Logarithmic Equations

*Goal - ONE term on each side
*CHECK FOR EXTRANEOUS SOLUTIONS

$3 \ln (x-4)+2=-4$	$\log 2 x+\log (x-5)=\log (100)$
$\ln (x-4)=-2$	$\log \left(2 x^{2}-10 x\right)=\log (100)$
$e^{\ln (x-4)}=e^{-2}$	$10^{\log \left(2 x^{2}-10 x\right)}=10^{\log (100)}$
$x-4=e^{-2}$	$2 x^{2}-10 x=100$
$x=4+e^{-2}$	$2 x^{2}-10 x-100=0$
$x=4.135$	$x^{2}-5 x-50=0$
	$(x-10)(x+5)=0$
	$x=10, x=-5$
	$x=-5$ is extraneous, the answer is $x=10$

Compound Interest

Domain Restrictions

Fractions:

| $y=\frac{f(x)}{g(x)}$ | Domain: $\{x \mid g(x) \neq 0\}$ |
| :--- | :--- |\quad| Ex: $y=\frac{x^{2}+9}{x-2},\{x \mid x \neq 2\}$ |
| :--- |
| Ex: $y=\frac{x-2}{x^{2}+9},\{x \mid x \in R\}$ |

Even Roots:

| $y=\sqrt[n]{f(x)}$,
 n is even | Domain: $\{x \mid f(x) \geq 0\}$ |
| :--- | :--- | :--- |\quad Ex: $y=2 \sqrt{x+7}-3,\{x \mid x \geq-7\}$

Logarithms:

$$
\begin{array}{|c|c|c|}
\hline y=\log _{b}(f(x)) & \text { Domain: } & \text { Ex: } y=-2 \ln x+4,\{x \mid x>0\} \\
\hline
\end{array}
$$

