8.4 Inferences from Matched Pairs (dependent)

We'll be looking at data sets that are related--each value in one sample will be related to a value in the other sample.

ex. The effectiveness of the Grapefruit Diet will can be studied by measuring the weights of subjects b/f they begin the diet and again after they have been on it for 1 month.

140

Assumptions

- 1) The sample data consist of matched pairs-dependent sets of data.
- 2) The samples are simple random samples.
- 3) Either or both conditions are satisfied: The number of matched pairs > 30 or the pairs have differences that are from a population that has a normal distribution.

8.3 Ho: M.= M2 Ha: M.> M2 Independent Means

Dependent
Muns

150>140 µd: mean of
150-140 differences

+10

8,4 Ho: $\mu_d = 0$ Ha: $\mu_d > D$ If the test is one tail, how can you tell if it's left or right tail?

Do test scores increase due to test prep?

720<750

Does a new diet work?

150>140

150

o test prep? Ho: $M_d = D$ Ha: $M_d < 0$

150 ta. Ma

Ho: Md = DHa: Md > 0 To test the claim, we will need d, which is the mean of the differences between the two sets of data.

How to calculate

- 1) Put first list of data in List 1 and second list in List 2.
- 2) Create a list 3 using L1 L2.

3) Find the mean of list 3. = d

d: mean of differences

To test whether a fuel additive improves gas mileage, investigators measured gas mileage of 7 cars with and without the fuel additive. At alpha = 0.10, can you conclude that the fuel additive improved gas mileage. Use the p-value method.

w/o additive 34.5 36.7 34.4 39.8 33.6 35.4 38.4 with additive 36.4 38.8 36.1 40.1 34.7 38.3 40.2

1) State Ho, Ha, and write a sentence for the claim. Ho: Md = O Ha: Md < O fuel additive improves gas mileage	2) State when to reject Ho. Posect to if Posalve < . 10
3) Find the test statistic and p-value.	fuel additive improves mpg

conf. int: Tinteral for L3

1) Write the confidence interval.

-1.734,.78359)

2) Is there a difference between the populations? Explain.

No, no difference.

D is in the conf. int.