5.1, 5.3, 6.1 Extra Practice

1.

In which of the following models is $\frac{dy}{dt}$ directly proportional to y?

- I. $v = e^{kt} + C$
- II. $y = Ce^{kt}$
- III. $y = 28^{kt}$
- IV. $y = 3\left(\frac{1}{2}\right)^{3t+1}$
- (A) I only (B) II only (C) I and II only (D) II and III only (E) II, III, and IV (F) all of them

2.

(Calculator permitted) Let R be the shaded region enclosed by the graphs of $y = e^{-x^2}$, $y = -\sin(3x)$, and the y-axis as shown at right. Which of the following gives the approximate area of the region *R*? (A) 1.139 (B) 1.445 (C) 1.869 (D) 2.114 (E) 2.340

3.

If $\frac{dy}{dt} = -2y$ and if y = 1 when t = 0, what is the value of t for which $y = \frac{1}{2}$?

- (A) $-\frac{1}{2}\ln 2$ (B) $-\frac{1}{4}$ (C) $\frac{1}{2}\ln 2$ (D) $\frac{\sqrt{2}}{2}$

4.

(Calculator permitted) Population y grows according to the equation $\frac{dy}{dx} = ky$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is

- (A) 0.069
- (B) 0.200
- (C) 0.301
- (D) 3.322
- (E) 5.000

5.

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \frac{1}{x}$. Which of the following gives the area of the region enclosed by the graphs of f and g between x = 1 and x = 2?

- (A) $e^2 e \ln 2$ (B) $\ln 2 e^2 + e$ (C) $e^2 \frac{1}{2}$ (D) $e^2 e \frac{1}{2}$ (E) $\frac{1}{e} \ln 2$

6.

Let R be the region in the first quadrant bounded by the x-axis, the graph of $x = y^2 + 2$, and the line x = 4. Which of the following integrals gives the area of R?

(A)
$$\int_{0}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (B)
$$\int_{0}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (C)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[4 - \left(y^{2} + 2 \right) \right] dy$$
 (D)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \left[\left(y^{2} + 2 \right) - 4 \right] dy$$
 (E)
$$\int_{2}^{4} \left[4 - \left(y^{2} + 2 \right) \right] dy$$

7.

Which of the following gives the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 3.

(A) 2 (B)
$$\frac{9}{2}$$
 (C) $\frac{13}{2}$ (D) 13 (E) $\frac{27}{2}$

8.

The slope field for a certain differential equation is shown above. Which of the following could be a solution to the differential equation with the initial condition y(0) = 1?

(A)
$$y = \cos x$$

(B)
$$y = 1 - x^2$$

(C)
$$y = e^x$$

(D)
$$y = \sqrt{1 - x^2}$$

(E)
$$y = \frac{1}{1+x^2}$$

9.

Which of the following is the solution to the differential equation $\frac{dy}{dx} = e^{y+x}$ with the initial condition $y(0) = -\ln 4$?

(A)
$$y = -x - \ln 4$$

(B)
$$y = x - \ln 4$$

$$(C) \quad y = -\ln(-e^x + 5)$$

$$(D) y = -\ln(e^x + 3)$$

$$(E) \quad y = \ln(e^x + 3)$$

10.

If P(t) is the size of a population at time t, which of the following differential equations describes linear growth in the size of the population?

(A)
$$\frac{dP}{dt} = 200$$

(B)
$$\frac{dP}{dt} = 200t$$

(C)
$$\frac{dP}{dt} = 100t^2$$

(D)
$$\frac{dP}{dt} = 200P$$

(E)
$$\frac{dP}{dt} = 100P^2$$

What is the area of the region in the first quadrant bounded by the graph of $y = e^{x/2}$ and the line x = 2?

- (A) 2e 2
- (B) 2e
- (C) $\frac{e}{2} 1$
- (D) $\frac{e-1}{2}$ (E) e-1