Name

2008 AP Calculus BC Multiple Choice Exam

Section 1 No Calculator Active

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

1. At time $t \ge 0$, a particle moving in the *xy*-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?

(A)
$$\left\langle 9, \frac{45}{2} \right\rangle$$
 (B) $\left\langle 6, 5 \right\rangle$ (C) $\left\langle 2, 0 \right\rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$
2. $\int xe^{x^2} dx =$
(A) $\frac{1}{2}e^{x^2} + C$ (B) $e^{x^2} + C$ (C) $xe^{x^2} + C$ (D) $\frac{1}{2}e^{2x} + C$ (E) $e^{2x} + C$

3. $\lim_{x \to 0} \frac{\sin x \cos x}{x}$ is

(A) -1 (B) 0 (C) 1 (D) $\frac{\pi}{4}$ (E) nonexistent

- 4. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
 - (A) $\lim_{n\to\infty}\frac{e}{n!} < 1$
 - (B) $\lim_{n\to\infty}\frac{n!}{e}<1$
 - (C) $\lim_{n\to\infty}\frac{n+1}{e} < 1$
 - (D) $\lim_{n\to\infty} \frac{e}{n+1} < 1$
 - (E) $\lim_{n\to\infty} \frac{e}{(n+1)!} < 1$

- 5. Which of the following gives the length of the path described by the parametric equations $x = \sin(t^3)$ and $y = e^{5t}$ from t = 0 to $t = \pi$?
 - (A) $\int_{0}^{\pi} \sqrt{\sin^{2}(t^{3}) + e^{10t}} dt$ (B) $\int_{0}^{\pi} \sqrt{\cos^{2}(t^{3}) + e^{10t}} dt$ (C) $\int_{0}^{\pi} \sqrt{9t^{4} \cos^{2}(t^{3}) + 25e^{10t}} dt$ (D) $\int_{0}^{\pi} \sqrt{3t^{2} \cos(t^{3}) + 5e^{5t}} dt$
 - (E) $\int_0^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

6. Let f be the function defined above. Which of the following statements about f are true?

- I. *f* has a limit at x = 2.
- II. f is continuous at x = 2.
- III. f is differentiable at x = 2.
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

- 7. Given that y(1) = -3 and $\frac{dy}{dx} = 2x + y$, what is the approximation for y(2) if Euler's method is used with a step size of 0.5, starting at x = 1?
 - (A) -5 (B) -4.25 (C) -4 (D) -3.75 (E) -3.5

x	2	3	5	8	13
f(x)	6	-2	-1	3	9

8. The function f is continuous on the closed interval [2, 13] and has values as shown in the table above. Using the intervals [2, 3], [3, 5], [5, 8], and [8, 13], what is the approximation of \$\int_2^{13} f(x) dx\$ obtained from a left Riemann sum?
(A) 6 (B) 14 (C) 28 (D) 32 (E) 50

Graph of f

- 9. The graph of the piecewise linear function f is shown in the figure above. If $g(x) = \int_{-2}^{x} f(t) dt$, which of the following values is greatest?
 - (A) g(-3) (B) g(-2) (C) g(0) (D) g(1) (E) g(2)

AP Calculus 2008 BC Multiple Choice

- 10. In the *xy*-plane, what is the slope of the line tangent to the graph of $x^2 + xy + y^2 = 7$ at the point (2, 1)?
- (A) $-\frac{4}{3}$ (B) $-\frac{5}{4}$ (C) -1 (D) $-\frac{4}{5}$ (E) $-\frac{3}{4}$

11. Let *R* be the region between the graph of $y = e^{-2x}$ and the *x*-axis for $x \ge 3$. The area of *R* is

(A)
$$\frac{1}{2e^6}$$
 (B) $\frac{1}{e^6}$ (C) $\frac{2}{e^6}$ (D) $\frac{\pi}{2e^6}$ (E) infinite

12. Which of the following series converges for all real numbers x?

(A)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(C)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$$

(E)
$$\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$$

13.
$$\int_{1}^{e} \frac{x^{2} + 1}{x} dx =$$
(A) $\frac{e^{2} - 1}{2}$ (B) $\frac{e^{2} + 1}{2}$ (C) $\frac{e^{2} + 2}{2}$ (D) $\frac{e^{2} - 1}{e^{2}}$ (E) $\frac{2e^{2} - 8e + 6}{3e}$

x	0	1	2	3
f''(x)	5	0	-7	4

- 14. The polynomial function f has selected values of its second derivative f " given in the table above. Which of the following statements must be true?
 - (A) f is increasing on the interval (0, 2).
 - (B) f is decreasing on the interval (0, 2).
 - (C) f has a local maximum at x = 1.
 - (D) The graph of f has a point of inflection at x = 1.
 - (E) The graph of f changes concavity in the interval (0, 2).

15. If
$$f(x) = (\ln x)^2$$
, then $f''(\sqrt{e}) =$
(A) $\frac{1}{e}$ (B) $\frac{2}{e}$ (C) $\frac{1}{2\sqrt{e}}$ (D) $\frac{1}{\sqrt{e}}$ (E) $\frac{2}{\sqrt{e}}$

- 16. What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges?
 - (A) -1 < x < 1
 - (B) x > 1 only
 - (C) $x \ge 1$ only
 - (D) x < -1 and x > 1 only
 - (E) $x \leq -1$ and $x \geq 1$

17. Let *h* be a differentiable function, and let *f* be the function defined by $f(x) = h(x^2 - 3)$. Which of the following is equal to f'(2)?

(A) h'(1) (B) 4h'(1) (C) 4h'(2) (D) h'(4) (E) 4h'(4)

18. In the *xy*-plane, the line x + y = k, where *k* is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of *k*?

(A)
$$-3$$
 (B) -2 (C) -1 (D) 0 (E) 1

$$19. \int \frac{7x}{(2x-3)(x+2)} dx =$$
(A) $\frac{3}{2} \ln |2x-3| + 2\ln |x+2| + C$
(B) $3\ln |2x-3| + 2\ln |x+2| + C$
(C) $3\ln |2x-3| - 2\ln |x+2| + C$
(D) $-\frac{6}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$
(E) $-\frac{3}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$

20. What is the sum of the series
$$1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \dots + \frac{(\ln 2)^n}{n!} + \dots$$
?

(A) ln 2

(B) $\ln(1 + \ln 2)$

- (C) 2
- (D) e^{2}
- (E) The series diverges.

- 21. A particle moves along a straight line. The graph of the particle's position x(t) at time t is shown above for 0 < t < 6. The graph has horizontal tangents at t = 1 and t = 5 and a point of inflection at t = 2. For what values of t is the velocity of the particle increasing?
 - (A) 0 < t < 2
 - (B) 1 < t < 5
 - (C) 2 < t < 6
 - (D) 3 < t < 5 only
 - (E) 1 < t < 2 and 5 < t < 6

AP Calculus 2008 BC Multiple Choice

x	0	1
f(x)	2	4
f'(x)	6	-3
g(x)	-4	3
g'(x)	2	-1

22. The table above gives values of f, f', g and g' for selected values of x. If $\int_{0}^{1} f'(x)g(x)dx = 5$, then $\int_{0}^{1} f(x)g'(x)dx =$

(A) -14 (B) -13 (C) -2 (D) 7 (E) 15

23. If $f(x) = x \sin(2x)$, which of the following is the Taylor series for f about x = 0?

(A)
$$x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$$

(B) $x - \frac{4x^3}{2!} + \frac{16x^5}{4!} - \frac{64x^7}{6!} + \cdots$
(C) $2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \cdots$
(D) $2x^2 - \frac{2x^4}{3!} + \frac{2x^6}{5!} - \frac{2x^8}{7!} + \cdots$
(E) $2x^2 - \frac{8x^4}{3!} + \frac{32x^6}{5!} - \frac{128x^8}{7!} + \cdots$

24. Which of the following differential equations for a population P could model the logistic growth shown in the figure above?

(A)
$$\frac{dP}{dt} = 0.2P - 0.001P^2$$

(B) $\frac{dP}{dt} = 0.1P - 0.001P^2$
(C) $\frac{dP}{dt} = 0.2P^2 - 0.001P$
(D) $\frac{dP}{dt} = 0.1P^2 - 0.001P$
(E) $\frac{dP}{dt} = 0.1P^2 + 0.001P$

$$f(x) = \begin{cases} cx+d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

- 25. Let f be the function defined above, where c and d are constants. If f is differentiable at x = 2, what is the value of c + d?
 - (A) -4 (B) -2 (C) 0 (D) 2 (E) 4

AP Calculus 2008 BC Multiple Choice

26. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure above?

(A)
$$\frac{1}{2} \int_{0}^{\pi} \sin^{2} \theta d\theta$$

(B) $\int_{0}^{\pi} \sin^{2} \theta d\theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin^{4} \theta d\theta$
(D) $\int_{0}^{\pi} \sin^{4} \theta d\theta$
(E) $2 \int_{0}^{\pi} \sin^{4} \theta d\theta$

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

27. Which of the following could be the slope field for the differential equation $\frac{dy}{dx} = y^2 - 1$?

28. In the *xy*-plane, a particle moves along the parabola $y = x^2 - x$ with a constant speed of $2\sqrt{10}$ units per second. If $\frac{dx}{dt} > 0$, what is the value of $\frac{dy}{dt}$ when the particle is at the point (2,2)?

(A)
$$\frac{2}{3}$$
 (B) $\frac{2\sqrt{10}}{3}$ (C) 3 (D) 6 (E) $6\sqrt{10}$

2008 AP Calculus BC Multiple Choice Exam

Section 2 Calculator Active

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

- 76. The graph of f', the derivative of a function f, is shown above. The domain of f is the open interval 0 < x < d. Which of the following statements is true?
- (A) f has a local minimum at x = c.
- (B) f has a local maximum at x = b.
- (C) The graph of f has a point of inflection at (a, f(a)).
- (D) The graph of f has a point of inflection at (b, f(b)).
- (E) The graph of f is concave up on the open interval (c, d).
- 77. Water is pumped out of a lake at the rate $R(t) = 12\sqrt{\frac{t}{t+1}}$ cubic meters per minute, where t is measured in minutes. How much water is pumped from time t = 0 to t = 5?
- (A) 9.439 cubic meters
- (B) 10.954 cubic meters
- (C) 43.816 cubic meters
- (D) 47.193 cubic meters
- (E) 54.772 cubic meters

78. The graph of a function f is shown above. For which of the following values of c does $\lim_{x\to c} f(x) = 1$?

- (A) 0 only
- (B) 0 and 3 only
- (C) -2 and 0 only
- (D) -2 and 3 only
- (E) -2, 0, and 3

79. Let *f* be a positive, continuous, decreasing function such that $a_n = f(n)$. If $\sum_{n=1}^{\infty} a_n$ converges to *k*, which of the following must be true?

- (A) $\lim_{n \to \infty} a_n = k$
- (B) $\int_{1}^{n} f(x) dx = k$
- (C) $\int_{1}^{\infty} f(x) dx$ diverges.
- (D) $\int_{1}^{\infty} f(x) dx$ converges.
- (E) $\int_{1}^{\infty} f(x) dx = k$

80. The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)?

(A) One	(B) Two	(C) Three	(D) Four	(E) Five
< / /				

81. Let f and g be continuous functions for $a \le x \le b$. If a < c < b, $\int_{a}^{b} f(x) dx = P$, $\int_{c}^{b} f(x) dx = Q$, $\int_{a}^{b} g(x) dx = R$, and $\int_{c}^{b} g(x) dx = S$, then $\int_{a}^{c} (f(x) - g(x)) dx = ?$

- (A) P-Q+R-S
- (B) P-Q-R+S
- (C) P-Q-R-S
- (D) P + Q R S
- (E) P+Q-R+S

- 82. If $\sum_{n=1}^{\infty} a_n$ diverges and $0 \le a_n \le b_n$ for all *n*, which of the following statements must be true?
- (A) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
- (B) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.
- (C) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges.
- (D) $\sum_{n=1}^{\infty} b_n$ converges.
- (E) $\sum_{n=1}^{\infty} b_n$ diverges.
- 83. What is the area enclosed by the curves $y = x^3 8x^2 + 18x 5$ and y = x + 5?

(A)10.667 (B) 11.833 (C) 14.583 (D) 21.333 (E) 32

84. Let f be a function with f(3) = 2, f'(3) = -1, f''(3) = 6, and f'''(3) = 12. Which of the following is the third-degree Taylor polynomial for f about x = 3?

(A)
$$2-(x-3)+3(x-3)^2+2(x-3)^3$$

(B) $2-(x-3)+3(x-3)^2+4(x-3)^3$
(C) $2-(x-3)+6(x-3)^2+12(x-3)^3$
(D) $2-x+3x^2+2x^3$
(E) $2-x+6x^2+12x^3$

- 85. A particle moves on the *x*-axis with velocity given by $v(t) = 3t^4 11t^2 + 9t 2$ for $-3 \le t \le 3$. How many times does the particle change direction as *t* increases from -3 to 3?
 - (A) Zero (B) One (C) Two (D) Three (E) Four

86. On the graph of y = f(x), the slope at any point (x, y) is twice the value of x. If f(2) = 3, what is the value of f(3)?

	(A) 6	(B) 7	(C) 8	(D) 9	(E) 10
--	-------	-------	-------	-------	--------

- 87. An object traveling in a straight line has position x(t) at time t. If the initial position is
 - x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1+t^2}$, what is the position of the object at time t = 3?

(A) 0.431 (B) 2.154 (C) 4.512 (D) 6.512 (E) 17.408

AP Calculus 2008 BC Multiple Choice

88. For all values of x, the continuous function f is positive and decreasing. Let g be the function given by $g(x) = \int_{2}^{x} f(t) dt$. Which of the following could be a table of values for g?

(A)		(B)			(0	C)		(D)			(E)		
x	g(x)		x	g(x)		x	g(x)		x	g(x)		x	g(x)
1	-2		1	-2		1	1		1	2		1	3
2	0		2	0		2	0		2	0		2	0
3	1		3	3		3	-2		3	-1		3	2

89. The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true?

- (A) For -2 < k < 2, f'(k) > 0.
- (B) For -2 < k < 2, f'(k) < 0.
- (C) For -2 < k < 2, f'(k) exists.
- (D) For -2 < k < 2, f'(k) exists, but f' is not continuous.
- (E) For some k, where -2 < k < 2, f'(k) does not exist.

x	f(x)	g(x)	f'(x)	g'(x)
-1	-5	1	3	0
0	-2	0	1	1
1	0	-3	0	0.5
2	5	-1	5	2

90. The table above gives values of the differentiable functions f and g and of their derivatives f' and g', at selected values of x. If h(x) = f(g(x)), what is the slope of the graph of h at x = 2?

(A) -10 (B) -6 (C) 5 (D) 6 (E) 10

91. Let f be the function given by $f(x) = \int_{1/3}^{x} \cos\left(\frac{1}{t^2}\right) dt$ for $\frac{1}{3} \le x \le 1$. At which of the following values of x does f attain a relative maximum?

(A) 0.357 and 0.798 (B) 0.4 and 0.564 (C) 0.4 only (D) 0.461 (E) 0.999

92. The figure above shows the graphs of the functions f and g. The graphs of the lines tangent to the graph of g at x = -3 and x = 1 are also shown. If B(x) = g(f(x)), what is B'(-3)?

(A)
$$-\frac{1}{2}$$
 (B) $-\frac{1}{6}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) $\frac{1}{2}$