\qquad

Calculus BC
 Multiple
 Choice Exam

Section 1

No Calculator Active

1. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at time $t=3$?
(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$
2. $\int x e^{x^{2}} d x=$
(A) $\frac{1}{2} e^{x^{2}}+C$
(B) $e^{x^{2}}+C$
(C) $x e^{x^{2}}+C$
(D) $\frac{1}{2} e^{2 x}+C$
(E) $e^{2 x}+C$
3. $\lim _{x \rightarrow 0} \frac{\sin x \cos x}{x}$ is
(A) -1
(B) 0
(C) 1
(D) $\frac{\pi}{4}$
(E) nonexistent
4. Consider the series $\sum_{n=1}^{\infty} \frac{e^{n}}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
(A) $\lim _{n \rightarrow \infty} \frac{e}{n!}<1$
(B) $\lim _{n \rightarrow \infty} \frac{n!}{e}<1$
(C) $\lim _{n \rightarrow \infty} \frac{n+1}{e}<1$
(D) $\lim _{n \rightarrow \infty} \frac{e}{n+1}<1$
(E) $\lim _{n \rightarrow \infty} \frac{e}{(n+1)!}<1$
5. Which of the following gives the length of the path described by the parametric equations $x=\sin \left(t^{3}\right)$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos \left(t^{3}\right)+5 e^{5 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

6. Let f be the function defined above. Which of the following statements about f are true?
I. f has a limit at $x=2$.
II. f is continuous at $x=2$.
III. f is differentiable at $x=2$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
7. Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of 0.5 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75
(E) -3.5

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

8. The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table above. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$, what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?
(A) 6
(B) 14
(C) 28
(D) 32
(E) 50

Graph of f
9. The graph of the piecewise linear function f is shown in the figure above. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is greatest?
(A) $g(-3)$
(B) $g(-2)$
(C) $g(0)$
(D) $g(1)$
(E) $g(2)$
10. In the $x y$-plane, what is the slope of the line tangent to the graph of $x^{2}+x y+y^{2}=7$ at the point $(2,1)$?
(A) $-\frac{4}{3}$
(B) $-\frac{5}{4}$
(C) -1
(D) $-\frac{4}{5}$
(E) $-\frac{3}{4}$
11. Let R be the region between the graph of $y=e^{-2 x}$ and the x-axis for $x \geq 3$. The area of R is
(A) $\frac{1}{2 e^{6}}$
(B) $\frac{1}{e^{6}}$
(C) $\frac{2}{e^{6}}$
(D) $\frac{\pi}{2 e^{6}}$
(E) infinite
12. Which of the following series converges for all real numbers x ?
(A) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(B) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
(C) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(D) $\sum_{n=1}^{\infty} \frac{e^{n} x^{n}}{n!}$
(E) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{e^{n}}$
13. $\int_{1}^{e} \frac{x^{2}+1}{x} d x=$
(A) $\frac{e^{2}-1}{2}$
(B) $\frac{e^{2}+1}{2}$
(C) $\frac{e^{2}+2}{2}$
(D) $\frac{e^{2}-1}{e^{2}}$
(E) $\frac{2 e^{2}-8 e+6}{3 e}$

x	0	1	2	3
$f "(x)$	5	0	-7	4

14. The polynomial function f has selected values of its second derivative f " given in the table above. Which of the following statements must be true?
(A) f is increasing on the interval $(0,2)$.
(B) f is decreasing on the interval $(0,2)$.
(C) f has a local maximum at $x=1$.
(D) The graph of f has a point of inflection at $x=1$.
(E) The graph of f changes concavity in the interval $(0,2)$.
15. If $f(x)=(\ln x)^{2}$, then $f^{\prime \prime}(\sqrt{e})=$
(A) $\frac{1}{e}$
(B) $\frac{2}{e}$
(C) $\frac{1}{2 \sqrt{e}}$
(D) $\frac{1}{\sqrt{e}}$
(E) $\frac{2}{\sqrt{e}}$
16. What are all values of x for which the series $\sum_{n=1}^{\infty}\left(\frac{2}{x^{2}+1}\right)^{n}$ converges?
(A) $-1<x<1$
(B) $x>1$ only
(C) $x \geq 1$ only
(D) $x<-1$ and $x>1$ only
(E) $x \leq-1$ and $x \geq 1$
17. Let h be a differentiable function, and let f be the function defined by $f(x)=h\left(x^{2}-3\right)$. Which of the following is equal to $f^{\prime}(2)$?
(A) $h^{\prime}(1)$
(B) $4 h^{\prime}(1)$
(C) $4 h^{\prime}(2)$
(D) $h^{\prime}(4)$
(E) $4 h^{\prime}(4)$

AP Calculus 2008 BC Multiple Choice

18. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1
19. $\int \frac{7 x}{(2 x-3)(x+2)} d x=$
(A) $\frac{3}{2} \ln |2 x-3|+2 \ln |x+2|+C$
(B) $3 \ln |2 x-3|+2 \ln |x+2|+C$
(C) $3 \ln |2 x-3|-2 \ln |x+2|+C$
(D) $-\frac{6}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
(E) $-\frac{3}{(2 x-3)^{2}}-\frac{2}{(x+2)^{2}}+C$
20. What is the sum of the series $1+\ln 2+\frac{(\ln 2)^{2}}{2!}+\cdots+\frac{(\ln 2)^{n}}{n!}+\cdots$?
(A) $\ln 2$
(B) $\ln (1+\ln 2)$
(C) 2
(D) e^{2}
(E) The series diverges.

21. A particle moves along a straight line. The graph of the particle's position $x(t)$ at time t is shown above for $0<t<6$. The graph has horizontal tangents at $t=1$ and $t=5$ and a point of inflection at $t=2$. For what values of t is the velocity of the particle increasing?
(A) $0<t<2$
(B) $1<t<5$
(C) $2<t<6$
(D) $3<t<5$ only
(E) $1<t<2$ and $5<t<6$

AP Calculus 2008 BC Multiple Choice

x	0	1
$f(x)$	2	4
$f^{\prime}(x)$	6	-3
$g(x)$	-4	3
$g^{\prime}(x)$	2	-1

22. The table above gives values of f, f^{\prime}, g and g^{\prime} for selected values of x. If $\int_{0}^{1} f^{\prime}(x) g(x) d x=5$, then $\int_{0}^{1} f(x) g^{\prime}(x) d x=$
(A) -14
(B) -13
(C) -2
(D) 7
(E) 15
23. If $f(x)=x \sin (2 x)$, which of the following is the Taylor series for f about $x=0$?
(A) $x-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}-\frac{x^{7}}{6!}+\cdots$
(B) $x-\frac{4 x^{3}}{2!}+\frac{16 x^{5}}{4!}-\frac{64 x^{7}}{6!}+\cdots$
(C) $2 x-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\frac{128 x^{7}}{7!}+\cdots$
(D) $2 x^{2}-\frac{2 x^{4}}{3!}+\frac{2 x^{6}}{5!}-\frac{2 x^{8}}{7!}+\cdots$
(E) $2 x^{2}-\frac{8 x^{4}}{3!}+\frac{32 x^{6}}{5!}-\frac{128 x^{8}}{7!}+\cdots$

24. Which of the following differential equations for a population P could model the logistic growth shown in the figure above?
(A) $\frac{d P}{d t}=0.2 P-0.001 P^{2}$
(B) $\frac{d P}{d t}=0.1 P-0.001 P^{2}$
(C) $\frac{d P}{d t}=0.2 P^{2}-0.001 P$
(D) $\frac{d P}{d t}=0.1 P^{2}-0.001 P$
(E) $\frac{d P}{d t}=0.1 P^{2}+0.001 P$

$$
f(x)=\left\{\begin{array}{lll}
c x+d & \text { for } & x \leq 2 \\
x^{2}-c x & \text { for } & x>2
\end{array}\right.
$$

25. Let f be the function defined above, where c and d are constants. If f is differentiable at $x=2$, what is the value of $c+d$?
(A) -4
(B) -2
(C) 0
(D) 2
(E) 4

26. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure above?
(A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
(B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
(D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
(E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$
27. Which of the following could be the slope field for the differential equation $\frac{d y}{d x}=y^{2}-1$?
(A)

(B)

(D)

28. In the $x y$-plane, a particle moves along the parabola $y=x^{2}-x$ with a constant speed of $2 \sqrt{10}$ units per second. If $\frac{d x}{d t}>0$, what is the value of $\frac{d y}{d t}$ when the particle is at the point $(2,2)$?
(A) $\frac{2}{3}$
(B) $\frac{2 \sqrt{10}}{3}$
(C) 3
(D) 6
(E) $6 \sqrt{10}$

 Calculus BC Multiple
 Choice Exam

 Section 2

 Section 2

 Calculator Active

 Calculator Active}

76. The graph of f^{\prime}, the derivative of a function f, is shown above. The domain of f is the open interval $0<x<d$. Which of the following statements is true?
(A) f has a local minimum at $x=c$.
(B) f has a local maximum at $x=b$.
(C) The graph of f has a point of inflection at $(a, f(a))$.
(D) The graph of f has a point of inflection at $(b, f(b))$.
(E) The graph of f is concave up on the open interval (c, d).
77. Water is pumped out of a lake at the rate $R(t)=12 \sqrt{\frac{t}{t+1}}$ cubic meters per minute, where t is measured in minutes. How much water is pumped from time $t=0$ to $t=5$?
(A) 9.439 cubic meters
(B) 10.954 cubic meters
(C) 43.816 cubic meters
(D) 47.193 cubic meters
(E) 54.772 cubic meters

78. The graph of a function f is shown above. For which of the following values of c does $\lim _{x \rightarrow c} f(x)=1$?
(A) 0 only
(B) 0 and 3 only
(C) -2 and 0 only
(D) -2 and 3 only
(E) $-2,0$, and 3
79. Let f be a positive, continuous, decreasing function such that $a_{n}=f(n)$. If $\sum_{n=1}^{\infty} a_{n}$ converges to k, which of the following must be true?
(A) $\lim _{n \rightarrow \infty} a_{n}=k$
(B) $\int_{1}^{n} f(x) d x=k$
(C) $\int_{1}^{\infty} f(x) d x$ diverges.
(D) $\int_{1}^{\infty} f(x) d x$ converges.
(E) $\int_{1}^{\infty} f(x) d x=k$
80. The derivative of the function f is given by $f^{\prime}(x)=x^{2} \cos \left(x^{2}\right)$. How many points of inflection does the graph of f have on the open interval $(-2,2)$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five
81. Let f and g be continuous functions for $a \leq x \leq b$. If $a<c<b, \int_{a}^{b} f(x) d x=P$, $\int_{c}^{b} f(x) d x=Q, \int_{a}^{b} g(x) d x=R$, and $\int_{c}^{b} g(x) d x=S$, then $\int_{a}^{c}(f(x)-g(x)) d x=$?
(A) $P-Q+R-S$
(B) $P-Q-R+S$
(C) $P-Q-R-S$
(D) $P+Q-R-S$
(E) $P+Q-R+S$
82. If $\sum_{n=1}^{\infty} a_{n}$ diverges and $0 \leq a_{n} \leq b_{n}$ for all n, which of the following statements must be true?
(A) $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(B) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
(C) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ diverges.
(D) $\sum_{n=1}^{\infty} b_{n}$ converges.
(E) $\sum_{n=1}^{\infty} b_{n}$ diverges.
83. What is the area enclosed by the curves $y=x^{3}-8 x^{2}+18 x-5$ and $y=x+5$?
(A) 10.667
(B) 11.833
(C) 14.583
(D) 21.333
(E) 32
84. Let f be a function with $f(3)=2, f^{\prime}(3)=-1, f^{\prime \prime}(3)=6$, and $f^{\prime \prime \prime}(3)=12$. Which of the following is the third-degree Taylor polynomial for f about $x=3$?
(A) $2-(x-3)+3(x-3)^{2}+2(x-3)^{3}$
(B) $2-(x-3)+3(x-3)^{2}+4(x-3)^{3}$
(C) $2-(x-3)+6(x-3)^{2}+12(x-3)^{3}$
(D) $2-x+3 x^{2}+2 x^{3}$
(E) $2-x+6 x^{2}+12 x^{3}$
85. A particle moves on the x-axis with velocity given by $v(t)=3 t^{4}-11 t^{2}+9 t-2$ for $-3 \leq t \leq 3$. How many times does the particle change direction as t increases from -3 to 3 ?
(A) Zero
(B) One
(C) Two
(D) Three
(E) Four
86. On the graph of $y=f(x)$, the slope at any point (x, y) is twice the value of x. If $f(2)=3$, what is the value of $f(3)$?
(A) 6
(B) 7
(C) 8
(D) 9
(E) 10
87. An object traveling in a straight line has position $x(t)$ at time t. If the initial position is $x(0)=2$ and the velocity of the object is $v(t)=\sqrt[3]{1+t^{2}}$, what is the position of the object at time $t=3$?
(A) 0.431
(B) 2.154
(C) 4.512
(D) 6.512
(E) 17.408
88. For all values of x, the continuous function f is positive and decreasing. Let g be the function given by $g(x)=\int_{2}^{x} f(t) d t$. Which of the following could be a table of values for g ?
(A)
(B)
(C)
(D)
(E)

x	$g(x)$
1	-2
2	0
3	1

x	$g(x)$
1	-2
2	0
3	3

x	$g(x)$
1	1
2	0
3	-2

x	$g(x)$
1	2
2	0
3	-1

x	$g(x)$
1	3
2	0
3	2

89. The function f is continuous for $-2 \leq x \leq 2$ and $f(-2)=f(2)=0$. If there is no c, where $-2<c<2$, for which $f^{\prime}(c)=0$, which of the following statements must be true?
(A) For $-2<k<2, f^{\prime}(k)>0$.
(B) For $-2<k<2, f^{\prime}(k)<0$.
(C) For $-2<k<2, f^{\prime}(k)$ exists.
(D) For $-2<k<2, f^{\prime}(k)$ exists, but f^{\prime} is not continuous.
(E) For some k, where $-2<k<2, f^{\prime}(k)$ does not exist.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	-5	1	3	0
0	-2	0	1	1
1	0	-3	0	0.5
2	5	-1	5	2

90. The table above gives values of the differentiable functions f and g and of their derivatives f^{\prime} and g^{\prime}, at selected values of x. If $h(x)=f(g(x))$, what is the slope of the graph of h at $x=2$?
(A) -10
(B) -6
(C) 5
(D) 6
(E) 10
91. Let f be the function given by $f(x)=\int_{1 / 3}^{x} \cos \left(\frac{1}{t^{2}}\right) d t$ for $\frac{1}{3} \leq x \leq 1$. At which of the following values of x does f attain a relative maximum?
(A) 0.357 and 0.798
(B) 0.4 and 0.564
(C) 0.4 only
(D) 0.461
(E) 0.999

92. The figure above shows the graphs of the functions f and g. The graphs of the lines tangent to the graph of g at $x=-3$ and $x=1$ are also shown. If $B(x)=g(f(x))$, what is $B^{\prime}(-3)$?
(A) $-\frac{1}{2}$
(B) $-\frac{1}{6}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) $\frac{1}{2}$
